Publications by authors named "Robert Maxey"

The identification of a novel fused triazolo-pyrrolopyridine scaffold, optimized derivatives of which display nanomolar inhibition of Janus kinase 1, is described. Prototypical example 3 demonstrated lower cell potency shift, better permeability in cells and higher oral exposure in rat than the corresponding, previously reported, imidazo-pyrrolopyridine analogue 2. Examples 6, 7 and 18 were subsequently identified from an optimization campaign and demonstrated modest selectivity over JAK2, moderate to good oral bioavailability in rat with overall pharmacokinetic profiles comparable to that reported for an approved pan-JAK inhibitor (tofacitinib).

View Article and Find Full Text PDF

Herein we report the discovery of the C-2 methyl substituted imidazopyrrolopyridine series and its optimization to provide potent and orally bioavailable JAK1 inhibitors with selectivity over JAK2. The C-2 methyl substituted inhibitor 4 exhibited not only improved JAK1 potency relative to unsubstituted compound 3 but also notable JAK1 vs JAK2 selectivity (20-fold and >33-fold in biochemical and cell-based assays, respectively). Features of the X-ray structures of 4 in complex with both JAK1 and JAK2 are delineated.

View Article and Find Full Text PDF
Article Synopsis
  • - A new treatment approach for inflammatory diseases like rheumatoid arthritis focuses on specifically targeting the JAK1 pathway, which could lead to better outcomes.
  • - Researchers identified a new binding structure while studying existing pan-JAK inhibitors, which showed a good ability to accept various chemical modifications.
  • - The study resulted in highly effective JAK1 inhibitors with strong performance in cell tests and selective action over JAK2, supported by X-ray crystallography to optimize their design.
View Article and Find Full Text PDF

(3-tert-Butyl-7-(5-methylisoxazol-3-yl)-2-(1-methyl-1H-1,2,4-triazol-5-ylmethoxy)pyrazolo[1,5-d][1,2,4]triazine (1) was recently identified as a functionally selective, inverse agonist at the benzodiazepine site of GABA(A) alpha5 receptors and enhances performance in animal models of cognition. The routes of metabolism of this compound in vivo in rat have been well characterised, the identities of the major metabolites are confirmed by synthesis and their biological profiles were evaluated. An unusual oxidation of the pyrazolo[1,5-d][1,2,4]triazine core to the corresponding pyrazolo[1,5-d][1,2,4]triazin-4(5H)-one scaffold by aldehyde oxidase has been observed.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers explored new bicyclic heteroaryl ring structures to replace a specific part of the rolipram chemical structure.
  • This investigation led to the identification of 8-methoxyquinoline-5-carboxamides.
  • These compounds were found to be strong inhibitors of the enzyme phosphodiesterase type 4 (PDE4).
View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: