Publications by authors named "Robert Martienssen"

Modern maize (Zea mays ssp. mays) was domesticated from Teosinte parviglumis (Zea mays ssp. parviglumis), with subsequent introgressions from Teosinte mexicana (Zea mays ssp.

View Article and Find Full Text PDF
Article Synopsis
  • Transcriptional silencing by RNA interference (RNAi) involves a complex process that requires the presence of transcription, specifically in Schizosaccharomyces pombe where the Cryptic Loci Regulator complex (CLRC) plays a crucial role.
  • CLRC, functioning as a cullin-ring E3 ligase, interacts with the E2 enzyme Ubc4, which modifies the histone methyltransferase Clr4, facilitating the shift from co-transcriptional to transcriptional gene silencing through different forms of histone methylation.
  • The study highlights the importance of phase separation and the role of non-coding RNA in regulating this process, impacting other transcriptional
View Article and Find Full Text PDF

Developmental epigenetic modifications in plants and animals are mostly reset during gamete formation but some are inherited from the germline. Small RNAs guide these epigenetic modifications but how inherited small RNAs are distinguished in plants and animals is unknown. Pseudouridine (Ψ) is the most abundant RNA modification but has not been explored in small RNAs.

View Article and Find Full Text PDF

Retrotransposons have invaded eukaryotic centromeres in cycles of repeat expansion and purging, but the function of centromeric retrotransposons has remained unclear. In Arabidopsis, centromeric ATHILA retrotransposons give rise to epigenetically activated short interfering RNAs in mutants in DECREASE IN DNA METHYLATION1 (DDM1). Here we show that mutants that lose both DDM1 and RNA-dependent RNA polymerase have pleiotropic developmental defects and mis-segregate chromosome 5 during mitosis.

View Article and Find Full Text PDF

Selfish genetic elements contribute to hybrid incompatibility and bias or 'drive' their own transmission. Chromosomal drive typically functions in asymmetric female meiosis, whereas gene drive is normally post-meiotic and typically found in males. Here, using single-molecule and single-pollen genome sequencing, we describe Teosinte Pollen Drive, an instance of gene drive in hybrids between maize (Zea mays ssp.

View Article and Find Full Text PDF

Background: Duckweeds are small, rapidly growing aquatic flowering plants. Due to their ability for biomass production at high rates they represent promising candidates for biofuel feedstocks. Duckweeds are also excellent model organisms because they can be maintained in well-defined liquid media, usually reproduce asexually, and because genomic resources are becoming increasingly available.

View Article and Find Full Text PDF

We present the genome of the living fossil, , a southern hemisphere conifer morphologically unchanged since the Cretaceous. Presumed extinct until rediscovery in 1994, the Wollemi pine is critically endangered with less than 60 wild adults threatened by intensifying bushfires in the Blue Mountains of Australia. The 12 Gb genome is among the most contiguous large plant genomes assembled, with extremely low heterozygosity and unusual abundance of DNA transposons.

View Article and Find Full Text PDF

Nucleosomes block access to DNA methyltransferase, unless they are remodeled by DECREASE in DNA METHYLATION 1 (DDM1), a Snf2-like master regulator of epigenetic inheritance. We show that DDM1 promotes replacement of histone variant H3.3 by H3.

View Article and Find Full Text PDF

Retrotransposons have invaded eukaryotic centromeres in cycles of repeat expansion and purging, but the function of centromeric retrotransposons, if any, has remained unclear. In , centromeric retrotransposons give rise to epigenetically activated short interfering RNAs (easiRNAs) in mutants in , which promote histone H3 lysine-9 di-methylation (H3K9me2). Here, we show that mutants which lose both DDM1 and RNA dependent RNA polymerase (RdRP) have pleiotropic developmental defects and mis-segregation of chromosome 5 during mitosis.

View Article and Find Full Text PDF

Epigenetic inheritance refers to the faithful replication of DNA methylation and histone modification independent of DNA sequence. Nucleosomes block access to DNA methyltransferases, unless they are remodeled by DECREASE IN DNA METHYLATION1 (DDM1 ), a Snf2-like master regulator of epigenetic inheritance. We show that DDM1 activity results in replacement of the transcriptional histone variant H3.

View Article and Find Full Text PDF

Most cancers exhibit aneuploidy, but its functional significance in tumor development is controversial. Here, we describe ReDACT (Restoring Disomy in Aneuploid cells using CRISPR Targeting), a set of chromosome engineering tools that allow us to eliminate specific aneuploidies from cancer genomes. Using ReDACT, we created a panel of isogenic cells that have or lack common aneuploidies, and we demonstrate that trisomy of chromosome 1q is required for malignant growth in cancers harboring this alteration.

View Article and Find Full Text PDF

Epigenetic modifications that arise during plant and animal development, such as DNA and histone modification, are mostly reset during gamete formation, but some are inherited from the germline including those marking imprinted genes. Small RNAs guide these epigenetic modifications, and some are also inherited by the next generation. In , these inherited small RNAs have poly (UG) tails, but how inherited small RNAs are distinguished in other animals and plants is unknown.

View Article and Find Full Text PDF

Most cancers exhibit aneuploidy, but its functional significance in tumor development is controversial. Here, we describe ReDACT (Restoring Disomy in Aneuploid cells using CRISPR Targeting), a set of chromosome engineering tools that allow us to eliminate specific aneuploidies from cancer genomes. Using ReDACT, we created a panel of isogenic cells that have or lack common aneuploidies, and we demonstrate that trisomy of chromosome 1q is required for malignant growth in cancers harboring this alteration.

View Article and Find Full Text PDF

Duckweeds are amongst the fastest growing of higher plants, making them attractive high-biomass targets for biofuel feedstock production. Their fronds have high rates of fatty acid synthesis to meet the demand for new membranes, but triacylglycerols (TAG) only accumulate to very low levels. Here we report on the engineering of Lemna japonica for the synthesis and accumulation of TAG in its fronds.

View Article and Find Full Text PDF

Although paramutation has been well-studied at a few hallmark loci involved in anthocyanin biosynthesis in maize, the cellular and molecular mechanisms underlying the phenomenon remain largely unknown. Previously described actors of paramutation encode components of the RNA-directed DNA-methylation (RdDM) pathway that participate in the biogenesis of 24-nucleotide small interfering RNAs (24-nt siRNAs) and long non-coding RNAs. In this study, we uncover an ARGONAUTE (AGO) protein as an effector of the RdDM pathway that is in charge of guiding 24-nt siRNAs to their DNA target to create de novo DNA methylation.

View Article and Find Full Text PDF

Centromeres attach chromosomes to spindle microtubules during cell division and, despite this conserved role, show paradoxically rapid evolution and are typified by complex repeats. We used long-read sequencing to generate the Col-CEN genome assembly that resolves all five centromeres. The centromeres consist of megabase-scale tandemly repeated satellite arrays, which support CENTROMERE SPECIFIC HISTONE H3 (CENH3) occupancy and are densely DNA methylated, with satellite variants private to each chromosome.

View Article and Find Full Text PDF

Plant genomes are largely comprised of retrotransposons which can replicate through 'copy and paste' mechanisms. Long terminal repeat (LTR) retrotransposons are the major class of retrotransposons in plant species, and importantly they broadly affect the expression of nearby genes. Although most LTR retrotransposons are non-functional, active retrotranspositions have been reported in plant species or mutants under normal growth condition and environmental stresses.

View Article and Find Full Text PDF

Epigenetic reprogramming occurs during gametogenesis as well as during embryogenesis to reset the genome for early development. In flowering plants, many heterochromatic marks are maintained in sperm, but asymmetric DNA methylation is mostly lost. Asymmetric DNA methylation is dependent on small RNA but the re-establishment of silencing in embryo is not well understood.

View Article and Find Full Text PDF

The innate and adaptive immune response are regulated by biological clocks, and circulating lymphocytes are lowest at sunrise. Accordingly, severity of disease in mouse models is highly dependent on the time of day of viral infection. Here, we explore whether circadian immunity contributes significantly to seasonality of respiratory viruses, including influenza and SARS-CoV-2.

View Article and Find Full Text PDF

Active DNA demethylation is required for sexual reproduction in plants but the molecular determinants underlying this epigenetic control are not known. Here, we show in Arabidopsis thaliana that the DNA glycosylases DEMETER (DME) and REPRESSOR OF SILENCING 1 (ROS1) act semi-redundantly in the vegetative cell of pollen to demethylate DNA and ensure proper pollen tube progression. Moreover, we identify six pollen-specific genes with increased DNA methylation as well as reduced expression in dme and dme;ros1.

View Article and Find Full Text PDF

Rootless plants in the genus are some of the fastest growing known plants on Earth. have a reduced body plan, primarily multiplying through a budding type of asexual reproduction. Here, we generated draft reference genomes for (Benth.

View Article and Find Full Text PDF

5-methyl cytosine is widespread in plant genomes in both CG and non-CG contexts. During replication, hemi-methylation on parental DNA strands guides symmetric CG methylation on nascent strands, but non-CG methylation requires modified histones and small RNA guides. Here, we used immortalized Arabidopsis cell suspensions to sort replicating nuclei and determine genome-wide cytosine methylation dynamics during the plant cell cycle.

View Article and Find Full Text PDF

Plant cells undergo two types of cell cycles-the mitotic cycle in which DNA replication is coupled to mitosis, and the endocycle in which DNA replication occurs in the absence of cell division. To investigate DNA replication programs in these two types of cell cycles, we pulse labeled intact root tips of maize (Zea mays) with 5-ethynyl-2'-deoxyuridine (EdU) and used flow sorting of nuclei to examine DNA replication timing (RT) during the transition from a mitotic cycle to an endocycle. Comparison of the sequence-based RT profiles showed that most regions of the maize genome replicate at the same time during S phase in mitotic and endocycling cells, despite the need to replicate twice as much DNA in the endocycle and the fact that endocycling is typically associated with cell differentiation.

View Article and Find Full Text PDF

Small RNA molecules can target a particular virus, gene, or transposable element (TE) with a high degree of specificity. Their ability to move from cell to cell and recognize targets in also allows building networks capable of regulating a large number of related targets at once. In the case of epigenetic silencing, small RNA may use the widespread distribution of TEs in eukaryotic genomes to coordinate many loci across developmental and generational time.

View Article and Find Full Text PDF