Publications by authors named "Robert Marr"

Adult tissue stem cells contribute to tissue homeostasis and repair but the long-lived neurons in the human adult cerebral cortex are not replaced, despite evidence for a limited regenerative response. However, the adult cortex contains a population of proliferating oligodendrocyte progenitor cells (OPCs). We examined the capacity of rat cortical OPCs to be re-specified to a neuronal lineage both and .

View Article and Find Full Text PDF

Impairments in neural lysosomal- and autophagic-mediated degradation of cellular debris contribute to neuritic dystrophy and synaptic loss. While these are well-characterized features of neurodegenerative disorders such as Alzheimer's disease (AD), the upstream cellular processes driving deficits in pathogenic protein mishandling are less understood. Using a series of fluorescent biosensors and optical imaging in model cells, AD mouse models and human neurons derived from AD patients, we reveal a previously undescribed cellular signaling cascade underlying protein mishandling mediated by intracellular calcium dysregulation, an early component of AD pathogenesis.

View Article and Find Full Text PDF

Direct cellular reprogramming exhibits distinct advantages over reprogramming from an induced pluripotent stem cell intermediate. These include a reduced risk of tumorigenesis and the likely preservation of epigenetic data. direct reprogramming approaches primarily aim to model the pathophysiological development of neurological disease and identify therapeutic targets, while direct reprogramming aims to develop treatments for various neurological disorders, including cerebral injury and cancer.

View Article and Find Full Text PDF

Traumatic brain injury (TBI) increases the risk for dementias including Alzheimer's disease (AD) and chronic traumatic encephalopathy. Further, both human and animal model data indicate that amyloid-beta (Aβ) peptide accumulation and its production machinery are upregulated by TBI. Considering the clear link between chronic Aβ elevation and AD as well as tau pathology, the role(s) of Aβ in TBI is of high importance.

View Article and Find Full Text PDF

Traditional approaches to studying Alzheimer's disease (AD) using mouse models and cell lines have advanced our understanding of AD pathogenesis. However, with the growing divide between model systems and clinical therapeutic outcomes, the limitations of these approaches are increasingly apparent. Thus, to generate more clinically relevant systems that capture pathological cascades within human neurons, we generated human-induced neurons (HiNs) from AD and non-AD individuals to model cell autonomous disease properties.

View Article and Find Full Text PDF

Neuropeptide Y (NPY) expression is tightly linked with the development of stress resilience in rodents and humans. Local NPY injections targeting the basolateral amygdala (BLA) produce long-term behavioral stress resilience in male rats via an unknown mechanism. Previously, we showed that activation of NPY Y receptors hyperpolarizes BLA principal neurons (PNs) through inhibition of the hyperpolarization-activated, depolarizing H-current, The present studies tested whether NPY treatment induces stress resilience by modulating NPY (10 pmol) was delivered daily for 5 d bilaterally into the BLA to induce resilience; thereafter, the electrophysiological properties of PNs and the expression of in the BLA were characterized.

View Article and Find Full Text PDF

Alterations in amyloid beta precursor protein (APP) have been implicated in cognitive decline in Alzheimer's disease (AD), which is accelerated in Down syndrome/Trisomy 21 (DS/TS21), likely due to the extra copy of the APP gene, located on chromosome 21. Proteolytic cleavage of APP generates amyloid-β (Aβ) peptide, the primary component of senile plaques associated with AD. Reducing Aβ production is predicted to lower plaque burden and mitigate AD symptoms.

View Article and Find Full Text PDF

Aging and major depressive disorder are risk factors for dementia, including Alzheimer's Disease (AD), but the mechanism(s) linking depression and dementia are not known. Both AD and depression show greater prevalence in women. We began to investigate this connection using females of the genetic model of depression, the inbred Wistar Kyoto More Immobile (WMI) rat.

View Article and Find Full Text PDF

Introduction: Cognitive aids, such as a guideline for the management of severe local anaesthetic (LA) toxicity, are tools designed to help users complete a task. Human factors experts recommend the use of simulation to iteratively test and re-design these tools. The purpose of this study was to apply human factors engineering principles to the testing and iterative re-design of three existing cognitive aids used for the management of severe LA toxicity and to use these data to develop a 'new' cognitive aid.

View Article and Find Full Text PDF

Repeat concussions (RC) can result in significant long-term neurological consequences and increased risk for neurodegenerative disease compared with single concussion (SC). Mechanisms underlying this difference are poorly understood and best elucidated using an animal model. To the best of our knowledge, there is no closed-head model in the adult rat using a commercially available device.

View Article and Find Full Text PDF

Apolipoprotein E receptor 2 (ApoER2) is an apolipoprotein E receptor involved in long-term potentiation, learning, and memory. Given its role in cognition and its association with the Alzheimer's disease (AD) risk gene, apoE, ApoER2 has been proposed to be involved in AD, though a role for the receptor in the disease is not clear. ApoER2 signaling requires amino acids encoded by alternatively spliced exon 19.

View Article and Find Full Text PDF

Presenilin-1 (PS1), the catalytic core of the aspartyl protease γ-secretase, regulates adult neurogenesis. However, it is not clear whether the role of neurogenesis in hippocampal learning and memory is PS1-dependent, or whether PS1 loss of function in adult hippocampal neurogenesis can cause learning and memory deficits. Here we show that downregulation of PS1 in hippocampal neural progenitor cells causes progressive deficits in pattern separation and novelty exploration.

View Article and Find Full Text PDF

Currently, there are very limited pharmaceutical interventions for Alzheimer's disease (AD) to alleviate the amyloid burden implicated in the pathophysiology of the disease. Alzheimer's disease is characterized immunohistologically by the accumulation of senile plaques in the brain with afflicted patients progressively losing short-term memory and, ultimately, cognition. Although significant improvements in clinical diagnosis and care for AD patients have been made, effective treatments for this devastating disease remain elusive.

View Article and Find Full Text PDF

Accumulation of the amyloid-beta (Aβ) peptide is a central factor in Alzheimer's disease (AD) pathogenesis as supported by continuing evidence. This review concisely summarizes this evidence supporting a critical role for Aβ in AD before discussing the clearance of this peptide. Mechanisms of clearance of Aβ are critical for preventing pathological elevations in Aβ concentration.

View Article and Find Full Text PDF

Neural stem cells are maintained in the subgranular layer of the dentate gyrus and in the subventricular zone in the adult mammalian brain throughout life. Neurogenesis is continuous, but its extent is tightly regulated by environmental factors, behavior, hormonal state, age, and brain health. Increasing evidence supports a role for new neurons in cognitive function in rodents.

View Article and Find Full Text PDF

The generation of new neurons in the mammalian hippocampus continues throughout life, and lineage progression is regulated by transcription factors, local cues, and environmental influences. The ability to direct stem/progenitor cell fate in situ may have therapeutic potential. Using an in vivo retroviral delivery and lineage tracing approach, we compare the lineage-instruction factors, Pax6 and Olig2, and demonstrate that both participate in regulation of adult hippocampal neurogenesis in adult rats.

View Article and Find Full Text PDF

Neprilysin-2 (NEP2), a close homolog of neprilysin (NEP), degrades amyloid-β (Aβ) and serves an important role in clearing Aβ in vivo. We measured NEP2 and NEP mRNA levels from non-impaired (NI), mild cognitive impaired (MCI), and clinical Alzheimer's disease (AD) subjects in the mid-temporal gyrus, mid-frontal gyrus, caudate, and cerebellum. NEP2 activity levels were also determined.

View Article and Find Full Text PDF

Intracellular Ca(2+) dysregulation is an underlying component of Alzheimer's disease (AD) pathophysiology, and recent evidence implicates the ryanodine receptor (RyR) in the disease pathway. Three genes code for different RyR isoforms and each gene transcript gives rise to several alternatively spliced messenger RNAs (mRNAs). These variants confer distinct functionality to the RyR channel, such as altering Ca(2+) release properties or subcellular localization.

View Article and Find Full Text PDF

Presenilin-1 (PS1) is the catalytic core of the aspartyl protease γ-secretase. Previous genetic studies using germ-line deletion of PS1 and conditional knock-out mice demonstrated that PS1 plays an essential role in neuronal differentiation during neural development, but it remained unclear whether PS1 plays a similar role in neurogenesis in the adult brain. Here we show that neural progenitor cells infected with lentiviral vectors-expressing short interfering RNA (siRNA) for the exclusive knockdown of PS1 in the neurogenic microenvironments, exhibit a dramatic enhancement of cell differentiation.

View Article and Find Full Text PDF

Alzheimer's disease (AD), an incurable, progressive neurodegenerative disorder, is the most common form of dementia. Therapeutic options have been elusive due to the inability to deliver proteins across the blood-brain barrier (BBB). In order to improve the therapeutic potential for AD, we utilized a promising new approach for delivery of proteins across the BBB.

View Article and Find Full Text PDF

Proteases that degrade the amyloid-β peptide (Aβ) are important in protecting against Alzheimer's disease (AD), and understanding these proteases is critical to understanding AD pathology. Endopeptidases sensitive to inhibition by thiorphan and phosphoramidon are especially important, because these inhibitors induce dramatic Aβ accumulation (∼30- to 50-fold) and pathological deposition in rodents. The Aβ-degrading enzyme neprilysin (NEP) is the best known target of these inhibitors.

View Article and Find Full Text PDF

Intranasal administration is emerging as a reliable and non-invasive method to bypass the blood-brain barrier and deliver drugs to the brain. This approach has been primarily used to explore therapeutic avenues for neurological diseases. However, intranasal administration could also be used to create animal models of brain disease.

View Article and Find Full Text PDF