Publications by authors named "Robert Mallory"

Biliary tract cancers have dismal prognoses even when cytotoxic chemotherapy is administered. There is an unmet need to develop precision treatment approaches using comprehensive genomic profiling. A total of 121 patients with biliary tract cancers were analyzed for circulating-tumor DNA (ctDNA) and/or tissue-based tumor DNA (tissue-DNA) using clinical-grade next-generation sequencing: 71 patients (59%) had ctDNA; 90 (74%), tissue-DNA; and 40 (33%), both.

View Article and Find Full Text PDF

Background And Aims: Gastrointestinal stromal tumors (GISTs) have significant variability in size and malignant behavior. Our current understanding is limited to pathological analyses, autopsy studies, and small case series. The aim of the current study is to define the risk factors, incidence, and mortality rates of GIST <2 cm in the National Cancer Institute's Surveillance, Epidemiology, and End Results database.

View Article and Find Full Text PDF

We report a technique for controlled synthesis of zero-, one-, and two-dimensional compound semiconductor nanostructures by using cubic, hexagonal, and lamellar lyotropic liquid crystals as templates, respectively. The liquid crystals were formed by self-assembly in a ternary system consisting of a poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) amphiphilic block copolymer as the surfactant, heptane as the non-polar dispersed phase, and formamide as the polar continuous phase. ZnSe quantum dots and nanowires with diameters smaller than 10 nm, as well as free-standing, disc-like quantum wells, were grown inside the spherical, cylindrical, and planar nanodomains, respectively, by reacting diethylzinc that was dissolved in the heptane domains with hydrogen selenide gas that was brought into contact with the liquid crystal in a sealed chamber at room temperature and atmospheric pressure.

View Article and Find Full Text PDF

The use of carrier spin in semiconductors is a promising route towards new device functionality and performance. Ferromagnetic semiconductors (FMSs) are promising materials in this effort. An n-type FMS that can be epitaxially grown on a common device substrate is especially attractive.

View Article and Find Full Text PDF