Entropy (Basel)
January 2023
Quantum routers will provide for important functionality in emerging quantum networks, and the deployment of quantum routing in real networks will initially be realized on low-complexity (few-qubit) noisy quantum devices. A true working quantum router will represent a new application for quantum entanglement-the coherent superposition of multiple communication paths traversed by the same quantum signal. Most end-user benefits of this application are yet to be discovered, but a few important use-cases are now known.
View Article and Find Full Text PDFHybrid entanglement between discrete-variable (DV) and continuous-variable (CV) quantum systems is an essential resource for heterogeneous quantum networks. Our previous work showed that in lossy channels the teleportation of DV qubits, via CV-entangled states, can be significantly improved by a new protocol defined by a modified Bell state measurement at the sender. This work explores whether a new, similarly modified, CV-based teleportation protocol can lead to improvement in the transfer of hybrid entangled states.
View Article and Find Full Text PDFThis publisher's note contains a correction to Opt. Lett.47, 1673 (2022)10.
View Article and Find Full Text PDFHigh-purity single-photon sources (SPS) that can operate at room temperature are highly desirable for a myriad of applications, including quantum photonics and quantum key distribution. In this work, we realize an ultra-bright solid-state SPS based on an atomic defect in hexagonal boron nitride (hBN) integrated with a solid immersion lens (SIL). The SIL increases the source efficiency by a factor of six, and the integrated system is capable of producing over ten million single photons per second at room temperature.
View Article and Find Full Text PDF