Ecological communities are increasingly exposed to multiple interacting stressors. For example, warming directly affects the physiology of organisms, eutrophication stimulates the base of the food web, and harvesting larger organisms for human consumption dampens top-down control. These stressors often combine in the natural environment with unpredictable results.
View Article and Find Full Text PDFParticle size is a significant factor in determining the dispersal and inhalation risk from bioaerosols. Green-waste composting is a significant source of bioaerosols (including pathogens), but little is known about the distribution of specific taxa across size fractions. To characterise size fractionated bioaerosol emissions from a compost facility, we used a Spectral Intensity Bioaerosol Sensor (SIBS) to quantify total bioaerosols and qPCR and metabarcoding to quantify microbial bioaerosols.
View Article and Find Full Text PDFThe establishment of epibacterial communities is fundamental to seaweed health and fitness, in modulating ecological interactions and may also facilitate adaptation to new environments. Abiotic factors like salinity can determine bacterial abundance, growth and community composition. However, influence of salinity as a driver of epibacterial community composition (until species level) has not been investigated for seaweeds and especially under long time scales.
View Article and Find Full Text PDFBioaerosols (or biogenic aerosols) have largely been overlooked by molecular ecologists. However, this is rapidly changing as bioaerosols play key roles in public health, environmental chemistry and the dispersal ecology of microbes. Due to the low environmental concentrations of bioaerosols, collecting sufficient biomass for molecular methods is challenging.
View Article and Find Full Text PDFSci Total Environ
November 2018
454-Pyrosequencing and lipid fingerprinting were used to link anaerobic digestion (AD) process parameters (pH, alkalinity, volatile fatty acids (VFAs), biogas production and methane content) with the reactor microbial community structure and composition. AD microbial communities underwent stress conditions after changes in organic loading rate and digestion substrates. 454-Pyrosequencing analysis showed that, irrespectively of the substrate digested, methane content and pH were always significantly, and positively, correlated with community evenness.
View Article and Find Full Text PDFThis study investigated the effect of changes in organic loading rate (OLR) and feedstock on the volatile fatty acids (VFAs) production and their potential use as a bioengineering management tool to improve stability of anaerobic digesters. Digesters were exposed to one or two changes in OLR using the same or different co-substrates (Fat Oil and Grease waste (FOG) and/or glycerol). Although all the OLR fluctuations produced a decrease in biogas and methane production, the digesters exposed twice to glycerol showed faster recovery towards stable conditions after the second OLR change.
View Article and Find Full Text PDF