Publications by authors named "Robert M Mok"

An incomplete science begets imperfect models. Nevertheless, the target article advocates for jettisoning deep-learning models with some competency in object recognition for toy models evaluated against a checklist of laboratory findings; an approach which evokes Alan Newell's 20 questions critique. We believe their approach risks incoherency and neglects the most basic test; can the model perform its intended task.

View Article and Find Full Text PDF

A complete neuroscience requires multilevel theories that address phenomena ranging from higher-level cognitive behaviors to activities within a cell. We propose an extension to the level of mechanism approach where a computational model of cognition sits in between behavior and brain: It explains the higher-level behavior and can be decomposed into lower-level component mechanisms to provide a richer understanding of the system than any level alone. Toward this end, we decomposed a cognitive model into neuron-like units using a neural flocking approach that parallels recurrent hippocampal activity.

View Article and Find Full Text PDF

For decades, researchers have debated whether mental representations are symbolic or grounded in sensory inputs and motor programs. Certainly, aspects of mental representations are grounded. However, does the brain also contain abstract concept representations that mediate between perception and action in a flexible manner not tied to the details of sensory inputs and motor programs? Such conceptual pointers would be useful when concepts remain constant despite changes in appearance and associated actions.

View Article and Find Full Text PDF

Human functional magnetic resonance imaging (fMRI) typically employs the blood-oxygen-level-dependent (BOLD) contrast mechanism. In non-human primates (NHP), contrast enhancement is possible using monocrystalline iron-oxide nanoparticles (MION) contrast agent, which has a more temporally extended response function. However, using BOLD fMRI in NHP is desirable for interspecies comparison, and the BOLD signal's faster response function promises to be beneficial for rapid event-related (rER) designs.

View Article and Find Full Text PDF

One view is that conceptual knowledge is organized using the circuitry in the medial temporal lobe (MTL) that supports spatial processing and navigation. In contrast, we find that a domain-general learning algorithm explains key findings in both spatial and conceptual domains. When the clustering model is applied to spatial navigation tasks, so-called place and grid cell-like representations emerge because of the relatively uniform distribution of possible inputs in these tasks.

View Article and Find Full Text PDF

Working memory (WM) is essential for normal cognitive function, but shows marked decline in aging. The importance of selective attention in guiding WM performance is increasingly recognized. Studies so far are inconclusive about the ability to use selective attention during WM in aging.

View Article and Find Full Text PDF

[Correction Notice: An Erratum for this article was reported online in on Jun 24 2019 (see record 2019-34942-001). In the article, the plots for Figure 3a shifted incorrectly to the right. The error bars should be centered on 10, 30, 50, 70, and 90.

View Article and Find Full Text PDF

Building machines that learn and think like humans is essential not only for cognitive science, but also for computational neuroscience, whose ultimate goal is to understand how cognition is implemented in biological brains. A new cognitive computational neuroscience should build cognitive-level and neural-level models, understand their relationships, and test both types of models with both brain and behavioral data.

View Article and Find Full Text PDF

Working memory (WM) declines as we age and, because of its fundamental role in higher order cognition, this can have highly deleterious effects in daily life. We investigated whether older individuals benefit from flexible orienting of attention within WM to mitigate cognitive decline. We measured magnetoencephalography (MEG) in older adults performing a WM precision task with cues during the maintenance period that retroactively predicted the location of the relevant items for performance (retro-cues).

View Article and Find Full Text PDF

Although oscillatory activity in the alpha band was traditionally associated with lack of alertness, more recent work has linked it to specific cognitive functions, including visual attention. The emerging method of rhythmic transcranial magnetic stimulation (TMS) allows causal interventional tests for the online impact on performance of TMS administered in short bursts at a particular frequency. TMS bursts at 10 Hz have recently been shown to have an impact on spatial visual attention, but any role in featural attention remains unclear.

View Article and Find Full Text PDF

There is increasing interest in multisensory influences upon sensory-specific judgments, such as when auditory stimuli affect visual perception. Here we studied whether the duration of an auditory event can objectively affect the perceived duration of a co-occurring visual event. On each trial, participants were presented with a pair of successive flashes and had to judge whether the first or second was longer.

View Article and Find Full Text PDF