Publications by authors named "Robert M McKiernan"

We describe construction of the synthetic yeast chromosome XI () and reveal the effects of redesign at non-coding DNA elements. The 660-kb synthetic yeast genome project (Sc2.0) chromosome was assembled from synthesized DNA fragments before CRISPR-based methods were used in a process of bug discovery, redesign, and chromosome repair, including precise compaction of 200 kb of repeat sequence.

View Article and Find Full Text PDF

Modular parts for tuning translation are prevalent in prokaryotic synthetic biology but lacking for eukaryotic synthetic biology. Working in yeast, we here describe how hairpin RNA structures inserted into the 5' untranslated region (5'UTR) of mRNAs can be used to tune expression levels by 100-fold by inhibiting translation. We determine the relationship between the calculated free energy of folding in the 5'UTR and protein abundance, and show that this enables rational design of hairpin libraries that give predicted expression outputs.

View Article and Find Full Text PDF

Fungi are a valuable source of enzymatic diversity and therapeutic natural products including antibiotics. Here we engineer the baker's yeast Saccharomyces cerevisiae to produce and secrete the antibiotic penicillin, a beta-lactam nonribosomal peptide, by taking genes from a filamentous fungus and directing their efficient expression and subcellular localization. Using synthetic biology tools combined with long-read DNA sequencing, we optimize productivity by 50-fold to produce bioactive yields that allow spent S.

View Article and Find Full Text PDF