It is widely recognized that the glycocalyx has significant implications in regulating the self-renewal and differentiation of adult stem cells; however, its composition remains poorly understood. Here, we show that the fucose-binding Aleuria aurantia lectin (AAL) binds differentially to basal cells in the stratified epithelium of the human limbus, hair follicle epithelium, and meibomian gland duct. Using fluorescence-activated cell sorting in combination with single-cell transcriptomics, we find that most epithelial progenitor cells and melanocytes in the limbus display low AAL staining (AAL) on their cell surface, an attribute that is gradually lost in epithelial cells as they differentiate into mature corneal cells.
View Article and Find Full Text PDFSingle-cell RNA-sequencing (scRNA-seq) is a powerful technique that can barcode individual cells and thus used to obtain a gene expression profile for every individual cell within a tissue. This makes scRNA-seq an excellent method for characterizing rare cell populations such as stem cells. We describe how scRNA-seq can be utilized to examine limbal epithelial stem cell population as well as investigate the contribution of autophagy to the function of limbal epithelial stem cells.
View Article and Find Full Text PDFLimbal epithelial stem cells are not only critical for corneal epithelial homeostasis but also have the capacity to change from a relatively quiescent mitotic phenotype to a rapidly proliferating cell in response to population depletion following corneal epithelial wounding. Pax6 mice display many abnormalities including corneal vascularization and these aberrations are consistent with a limbal stem cell deficiency (LSCD) phenotype. FoxC1 has an inhibitory effect on corneal avascularity and a positive role in stem cell maintenance in many tissues.
View Article and Find Full Text PDFA distinct boundary exists between the progenitor cells in the basal limbal epithelium and the more differentiated corneal epithelial basal cells. We have shown that reciprocal expression patterns of EphA2 and Ephrin-A1 are likely to contribute to normal limbal-corneal epithelial compartmentalization as well as play a role in response to injury. How this signaling axis is regulated remains unclear.
View Article and Find Full Text PDFPurpose: To understand the relationship between ciliogenesis and autophagy in the corneal epithelium.
Methods: siRNAs for EphA2 or PLD1 were used to inhibit protein expression in vitro. Morpholino-anti-EphA2 was used to knockdown EphA2 in Xenopus skin.
Medicine has been a great beneficiary of the nanotechnology revolution. Nanotechnology involves the synthesis of functional materials with at least one size dimension between 1 and 100 nm. Advances in the field have enabled the synthesis of bio-nanoparticles that can interface with physiological systems to modulate fundamental cellular processes.
View Article and Find Full Text PDFMol Cell Endocrinol
June 2021
Angiotensin converting enzyme 2 (ACE2), a component of the renin-angiotensin system (RAS), has been identified as the receptor for the SARS-CoV-2. Several RAS components including ACE2 and its substrate Ang II are present in both eye and skin, two stratified squamous epithelial tissues that isolate organisms from external environment. Our recent findings in cornea and others in both skin and eye suggest contribution of this system, and specifically of ACE2 in variety of physiological and pathological responses of these organ systems.
View Article and Find Full Text PDFmicroRNAs regulate numerous biological processes, making them potential therapeutic agents. Problems with delivery and stability of these molecules have limited their usefulness as treatments. We demonstrate that synthetic high-density lipoprotein nanoparticles (HDL NPs) topically applied to the intact ocular surface are taken up by epithelial and stromal cells.
View Article and Find Full Text PDFThe anterior surface of the eye functions as a barrier to the external environment and protects the delicate underlying tissues from injury. Central to this protection are the corneal, limbal and conjunctival epithelia. The corneal epithelium is a self-renewing stratified squamous epithelium that protects the underlying delicate structures of the eye, supports a tear film and maintains transparency so that light can be transmitted to the interior of the eye (Basu et al.
View Article and Find Full Text PDFPurpose: Single-cell RNA-sequencing (scRNA-seq) was used to interrogate the relatively rare stem (SC) and early transit amplifying (TA) cell populations in limbal/corneal epithelia from wild-type and autophagy-compromised mice.
Methods: We conducted scRNA-seq on ocular anterior segmental tissue from wild-type and beclin 1-deficient (beclin1+/-) mice, using a 10X Gemomics pipeline. Cell populations were distinguished by t-distributed stochastic neighbor embedding.
Identification and characterization of the limbal epithelial stem cells (LESCs) has proven to be a major accomplishment in anterior ocular surface biology. These cells have been shown to be a subpopulation of limbal epithelial basal cells, which serve as the progenitor population of the corneal epithelium. LESCs have been demonstrated to play an important role in maintaining corneal epithelium homeostasis.
View Article and Find Full Text PDFEphA2 receptor tyrosine kinase is activated by ephrin-A1 ligand, which harbors a glycosylphosphatidylinositol anchor that enhances lipid raft localization. Although EphA2 and ephrin-A1 modulate keratinocyte migration and differentiation, the ability of this cell-cell communication complex to localize to different membrane regions in keratinocytes remains unknown. Using a combination of biochemical and imaging approaches, we provide evidence that ephrin-A1 and a ligand-activated form of EphA2 partition outside of lipid raft domains in response to calcium-mediated cell-cell contact stabilization in normal human epidermal keratinocytes.
View Article and Find Full Text PDFPurpose: Progenitor cells of the limbal epithelium reside in a discrete area peripheral to the more differentiated corneal epithelium and maintain tissue homeostasis. What regulates the limbal-corneal epithelial boundary is a major unanswered question. Ephrin-A1 ligand is enriched in the limbal epithelium, whereas EphA2 receptor is concentrated in the corneal epithelium.
View Article and Find Full Text PDFPemphigus consists of a group of chronic blistering skin diseases mediated by autoantibodies (autoAbs). The dogma that pemphigus is caused by keratinocyte dissociation (acantholysis) as a distinctive and direct consequence of the presence of autoAb targeting two main proteins of the desmosome-desmoglein (DSG) 1 and/or DSG3-has been put to the test. Several outside-in signaling events elicited by pemphigus autoAb in keratinocytes have been described, among which stands out p38 mitogen-activated protein kinase (p38 MAPK) engagement and its apoptotic effect on keratinocytes.
View Article and Find Full Text PDFMacroautophagy/autophagy is vital for cellular homeostasis and helps cells respond to various stress situations. Macropinocytosis enables cells to nonselectively engulf and take up large volumes of fluid and is known to supply amino acids to cells. The stem cell-enriched limbal epithelium has the machinery necessary to carry out both autophagy and macropinocytosis; however, both processes are relatively understudied in this tissue.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
January 2017
Autophagy and macropinocytosis are processes that are vital for cellular homeostasis, and help cells respond to stress and take up large amounts of material, respectively. The limbal and corneal epithelia have the machinery necessary to carry out both processes; however, autophagy and macropinocytosis are relatively understudied in these two epithelia. In this Perspectives, we describe the basic principles behind macropinocytosis and autophagy, discuss how these two processes are regulated in the limbal and corneal epithelia, consider how these two processes impact on the physiology of limbal and corneal epithelia, and elaborate on areas of future research in autophagy and macropinocytosis as related to the limbal/corneal epithelia.
View Article and Find Full Text PDFBiochim Biophys Acta
October 2016
Genetic variations mapping to 3' untranslated regions (3'UTRs) may overlap with microRNA (miRNA) binding sites, therefore potentially interfering with translation inhibition or messenger RNA (mRNA) degradation. The aim of this study was to investigate whether single nucleotide polymorphisms (SNPs) located within the 3'UTRs of six candidate genes and predicted to interfere with miRNA ligation could account for disease-relevant differential mRNA levels. Focusing on pemphigus foliaceus (PF) - an autoimmune blistering skin condition with unique endemic patterns - we investigated whether nine 3'UTR SNPs from the CD1D, CTLA4, KLRD1, KLRG1, NKG7, and TNFSF13B genes differentially expressed in PF were disease-associated.
View Article and Find Full Text PDFOne of the major adverse effects of topical glucocorticoids is cutaneous atrophy often followed by development of resistance to steroids (tachyphylaxis). Previously we showed that after two weeks, interfollicular mouse keratinocytes acquired resistance to anti-proliferative effects of glucocorticoid fluocinolone acetonide (FA). One of the top genes activated by FA during tachyphylaxis was Klk6 encoding kallikrein-related peptidase 6, known to enhance keratinocyte proliferation.
View Article and Find Full Text PDFKeratinization of the stratum corneum involves a highly choreographed sequence of events in which granular cells lose their nuclei and become desiccated corneocytes. Akinduro et al. detail the molecular machinery underlying removal of the nucleus (nucleophagy) during the final stages of keratinization.
View Article and Find Full Text PDFMicroRNAs are critical regulators of stem cell behavior. The miR-103/107 family is preferentially expressed in the stem cell-enriched corneal limbal epithelium and plays an important role in coordinating several intrinsic characteristics of limbal epithelial stem cells. To elucidate further the mechanisms by which miRs-103/107 function in regulating limbal epithelial stem cells, we investigate the global effects of miRs-103/107 on gene expression in an unbiased manner.
View Article and Find Full Text PDF