Over the past few decades, drug discovery directed at the treatment and prevention of thromboembolic diseases has been challenged by the need to balance robust efficacy with improved safety relative to the standard of care. To this end, the most impactful advance to date has been the discovery and development of oral factor Xa inhibitors. In this essay, a brief account of the program that culminated in the discovery of Eliquis (apixaban) and the commitment to identify a compound with an optimal profile are described.
View Article and Find Full Text PDFAims: The aims of the present study were to assess the safety, pharmacokinetics (PK) and pharmacodynamics (PD) of BMS-962212, a first-in-class factor XIa inhibitor, in Japanese and non-Japanese healthy subjects.
Methods: This was a randomized, placebo-controlled, double-blind, sequential, ascending-dose study of 2-h (part A) and 5-day (part B) intravenous (IV) infusions of BMS-962212. Part A used four doses (1.
Objective: Warfarin is the current standard for oral anticoagulation therapy in patients with mechanical heart valves, yet optimal therapy to maximize anticoagulation and minimize bleeding complications requires routine coagulation monitoring, possible dietary restrictions, and drug interaction monitoring. As alternatives to warfarin, oral direct acting factor Xa inhibitors are currently approved for the prophylaxis and treatment of venous thromboembolism and reduction of stroke and systemic embolization. However, no in vivo preclinical or clinical studies have been performed directly comparing oral factor Xa inhibitors such as apixaban to warfarin, the current standard of therapy.
View Article and Find Full Text PDFIn an effort to identify a potential back-up to apixaban (Eliquis®), we explored a series of diversified P4 moieties. Several analogs with substituted gem-dimethyl moieties replacing the terminal lactam of apixaban were identified which demonstrated potent FXa binding affinity (FXa Ki), good human plasma anticoagulant activity (PT EC2x), cell permeability, and oral bioavailability.
View Article and Find Full Text PDFInhibitors of the Tissue Factor/Factor VIIa (TF-FVIIa) complex are promising novel anticoagulants that show excellent efficacy and minimal bleeding in preclinical models. On the basis of a zwitterionic phenylglycine acylsulfonamide 1, a phenylglycine benzylamide 2 was shown to possess improved permeability and oral bioavailability. Optimization of the benzylamide, guided by X-ray crystallography, led to a potent TF-FVIIa inhibitor 18i with promising oral bioavailability, but promiscuous activity in an in vitro safety panel of receptors and enzymes.
View Article and Find Full Text PDFA 6-amidinotetrahydroquinoline screening hit was driven to a structurally novel, potent, and selective FVIIa inhibitor through a combination of library synthesis and rational design. An efficient gram-scale synthesis of the active enantiomer BMS-593214 was developed, which required significant optimization of the key Povarov annulation. Importantly, BMS-593214 showed antithrombotic efficacy in a rabbit arterial thrombosis model.
View Article and Find Full Text PDFBicyclic pyrazinone and pyrimidinone amides were designed and synthesized as potent TF-FVIIa inhibitors. SAR demonstrated that the S2 and S3 pockets of FVIIa prefer to bind small, lipophilic groups. An X-ray crystal structure of optimized compound 9b bound in the active site of FVIIa showed that the bicyclic scaffold provides 5 hydrogen bonding interactions in addition to projecting groups for interactions within the S1, S2 and S3 pockets.
View Article and Find Full Text PDFIntroduction: Factor Xa (FXa) is a critical enzyme in the coagulation cascade responsible for thrombin generation, the final enzyme that leads to fibrin clot formation. Significant success has recently been reported with compounds such as rivaroxaban, apixaban and edoxaban in the treatment and prevention of venous thromboembolism (VTE) and more recently in the prevention of stroke in atrial fibrillation (AF). The success these agents have demonstrated is now being reflected by a narrowing of new FXa patents over the past few years.
View Article and Find Full Text PDFClin Appl Thromb Hemost
September 2013
Conventional prothrombin time (PT) assays have limited sensitivity and dynamic range in monitoring the anticoagulant activity of direct factor Xa inhibitors. Hence, new assays are needed. We modified a PT assay by adding calcium chloride (CaCl2) to the thromboplastin reagent to increase assay dynamic range and improve sensitivity.
View Article and Find Full Text PDFBackground: The efficacy and safety of prolonging prophylaxis for venous thromboembolism in medically ill patients beyond hospital discharge remain uncertain. We hypothesized that extended prophylaxis with apixaban would be safe and more effective than short-term prophylaxis with enoxaparin.
Methods: In this double-blind, double-dummy, placebo-controlled trial, we randomly assigned acutely ill patients who had congestive heart failure or respiratory failure or other medical disorders and at least one additional risk factor for venous thromboembolism and who were hospitalized with an expected stay of at least 3 days to receive apixaban, administered orally at a dose of 2.
Eur J Drug Metab Pharmacokinet
September 2011
Apixaban is a potent, highly selective, reversible, oral, direct factor Xa (fXa) inhibitor in development for thrombosis prevention and treatment. The preclinical pharmacokinetic (PK) attributes of apixaban feature small volume of distribution (Vd), low systemic clearance (CL), and good oral bioavailability. Apixaban is well absorbed in rat, dog, and chimpanzee, with absolute oral bioavailability of approximately 50% or greater.
View Article and Find Full Text PDFApixaban is a potent, direct, selective, and orally active inhibitor of coagulation factor Xa. Rate constants for apixaban binding to free and prothrombinase-bound factor Xa were measured using multiple techniques. The inhibition mechanism was determined in purified systems and in a plasma prothrombin clotting time assay.
View Article and Find Full Text PDFFactor (F) VIIa in association with tissue factor (TF) is the primary in vivo initiator of blood coagulation and activates FX and FIX to generate thrombin, which plays a key role in the pathogenesis of thrombosis. We evaluated the enzyme kinetics, antithrombotic and antihaemostatic properties of BMS-593214, an active-site, direct FVIIa inhibitor. Studies were conducted in enzymatic assays, and in anesthetised rabbit models of electrically-induced carotid arterial thrombosis (AT), thread-induced vena cava venous thrombosis (VT) and cuticle bleeding time (BT).
View Article and Find Full Text PDFWe have discovered that phenyltriazolinone is a novel and potent P1 moiety for coagulation factor Xa. X-ray structures of the inhibitors with a phenyltriazolinone in the P1 position revealed that the side chain of Asp189 has reoriented resulting in a novel S1 binding pocket which is larger in size to accommodate the phenyltriazolinone P1 substrate.
View Article and Find Full Text PDFThe metabolism and disposition of [(14)C]apixaban, a potent, reversible, and direct inhibitor of coagulation factor Xa, were investigated in mice, rats, rabbits, dogs, and humans after a single oral administration and in incubations with hepatocytes. In plasma, the parent compound was the major circulating component in mice, rats, dogs, and humans. O-Demethyl apixaban sulfate (M1) represented approximately 25% of the parent area under the time curve in human plasma.
View Article and Find Full Text PDFApixaban, a potent and highly selective factor Xa inhibitor, is currently under development for treatment of arterial and venous thrombotic diseases. The O-demethyl apixaban sulfate is a major circulating metabolite in humans but circulates at lower concentrations relative to parent in animals. The aim of this study was to identify the sulfotransferases (SULTs) responsible for the sulfation reaction.
View Article and Find Full Text PDFWe previously disclosed a series of highly potent FXa inhibitors bearing alpha-substituted (CH(2)NR(1)R(2)) phenylcyclopropyl P4 moieties in the pyrazolodihydropyridone core system. Herein, we describe our continuous SAR efforts in this series. Effects of the C-3 substitution of the pyrazolodihydropyridone core and the alpha-substitution (R group) of the cyclopropyl ring on FXa binding affinity (FXa K(i)), human plasma anticoagulant activity (PT EC(2x)) and permeability are discussed.
View Article and Find Full Text PDFOrtho-substituted biphenyl moieties are widely used in drug design. We herein report a successful use of the perpendicular conformation of the alpha-substituted phenylcyclopropyl groups to mimic the aplanar, biologically active conformation of the ortho-substituted biphenyl moieties to achieve structural diversity. This is exemplified by the design and synthesis of a series of highly potent pyrazole bicyclic-based Factor Xa (FXa) inhibitors bearing alpha-substituted phenylcyclopropyl P4 moieties.
View Article and Find Full Text PDFIntroduction of the phenyl piperidinone and phenyl pyridinone P4 moieties in the anthranilamide scaffold led to potent, selective, and orally bioavailable inhibitors of factor Xa. Anthranilamide 28 displayed comparable efficacy to apixaban in the rabbit arteriovenous-shunt (AV) thrombosis model.
View Article and Find Full Text PDFAs part of an effort to identify novel backups for previously reported pyrazole-based coagulation Factor Xa inhibitors, the pyrazole 5-carboxamide moiety was replaced by 3-(sulfonylamino)-2-piperidone. This led to the identification of a structurally diverse chemotype that was further optimized to incorporate neutral or weakly basic aryl and heteroaryl P1 groups while maintaining good potency versus Factor Xa. Substitution at the sulfonamide nitrogen provided further improvements in potency and as did introduction of alternate P4 moieties.
View Article and Find Full Text PDFEfforts to further optimize the clinical candidate razaxaban have led to a new series of pyrazole-based factor Xa (fXa) inhibitors. Designed to prevent the potential formation of primary aniline metabolites in vivo, the nitrogen of the carboxamido linker between the pyrazole and proximal phenyl moiety of the razaxaban scaffold was replaced with a methylene group. The resulting ketones demonstrated excellent potency and selectivity for fXa but initially had poor oral bioavailability.
View Article and Find Full Text PDFRazaxaban is a selective, potent, and orally bioavailable inhibitor of coagulation factor Xa. The molecule contains a 1,2-benzisoxazole structure. After oral administration of [(14)C]razaxaban to intact and bile duct-cannulated rats (300 mg/kg) and dogs (20 mg/kg), metabolism followed by biliary excretion was the major elimination pathway in both species, accounting for 34 to 44% of the dose, whereas urinary excretion accounted for 3 to 13% of the dose.
View Article and Find Full Text PDFA new series of pyrazole-based factor Xa inhibitors have been identified as part of our ongoing efforts to optimize previously reported clinical candidate razaxaban. Concern over the possible formation of primary aniline metabolites via amide hydrolysis led to the replacement of the primary amide linker between the pyrazole and phenyl moieties with secondary amides. This was accomplished by replacing the aniline with a variety of heterobicycles, of which indolines were the most potent.
View Article and Find Full Text PDFEfforts to identify a suitable follow-on compound to razaxaban (compound 4) focused on modification of the carboxamido linker to eliminate potential in vivo hydrolysis to a primary aniline. Cyclization of the carboxamido linker to the novel bicyclic tetrahydropyrazolopyridinone scaffold retained the potent fXa binding activity. Exceptional potency of the series prompted an investigation of the neutral P1 moieties that resulted in the identification of the p-methoxyphenyl P1, which retained factor Xa binding affinity and good oral bioavailability.
View Article and Find Full Text PDF