It is well acknowledged from observations in humans that iron deficiency during pregnancy can be associated with a number of developmental problems in the newborn and developing child. Due to the obvious limitations of human studies, the stage during gestation at which maternal iron deficiency causes an apparent impairment in the offspring remains elusive. In order to begin to understand the time window(s) during pregnancy that is/are especially susceptible to suboptimal iron levels, which may result in negative effects on the development of the fetus, we developed a rat model in which we were able to manipulate and monitor the dietary iron intake during specific stages of pregnancy and analyzed the developing fetuses.
View Article and Find Full Text PDFThe dispersion in air of nanoparticles of different sizes, materials and morphologies with controlled agglomeration involving aerosol delivery for in vivo and in vitro studies is one of the most difficult challenges in the field of nanoparticle toxicology. We describe here a nanoparticle dispersion system using an electrospray method to deliver airborne nanoparticles (approximately 10-100 nm) with spatial uniformity and controllable particle concentration for in vitro and in vivo studies. With the dispersion method, single nanoparticles (polystyrene latex particles, TiO(2), Au, Mn, quantum dots, and carbon nanotubes) can be delivered to cells and animals via the air.
View Article and Find Full Text PDFDopaminergic (DAergic) systems have been identified as putative targets for polycholorinated biphenyl (PCB) actions. However, the precise mechanisms leading to neurotoxicity are unresolved. Reactive oxygen species (ROS) were recently shown to mediate injury in DAergic MN9D cells following exposure to Aroclor 1254 (A1254), a commercial PCB mixture.
View Article and Find Full Text PDF