Over the last 2 decades, therapeutic hypothermia has become the standard of care to reduce morbidity and mortality in neonates affected by moderate-to-severe hypoxic-ischemic encephalopathy (HIE). There is a significant interest in improving the neurologic outcomes of neonatal HIE, ranging from adjunctive therapy to therapeutic hypothermia. Importantly, the pathophysiologic mechanisms underlying HIE also affect multiple other organs, contributing to high morbidity and mortality in this patient population.
View Article and Find Full Text PDFPreclinical studies have established that neonatal exposure to contemporary sedative/hypnotic drugs causes neurotoxicity in the developing rodent and primate brains. Our group recently reported that novel neuroactive steroid (3β,5β,17β)-3-hydroxyandrostane-17-carbonitrile (3β-OH) induced effective hypnosis in both neonatal and adult rodents but did not cause significant neurotoxicity in vulnerable brain regions such as subiculum, an output region of hippocampal formation particularly sensitive to commonly used sedatives/hypnotics. Despite significant emphasis on patho-morphological changes, little is known about long-term effects on subicular neurophysiology after neonatal exposure to neuroactive steroids.
View Article and Find Full Text PDFBrain ischemia affects all ages, from neonates to the elderly population, and is a leading cause of mortality and morbidity. Multiple preclinical rodent models involving different ages have been developed to investigate the effect of ischemia during different times of key brain maturation events. Traditional models of developmental brain ischemia have focused on rodents at postnatal day 7-10, though emerging models in juvenile rodents (postnatal days 17-25) indicate that there may be fundamental differences in neuronal injury and functional outcomes following focal or global cerebral ischemia at different developmental ages, as well as in adults.
View Article and Find Full Text PDFNeurological symptoms following cerebellar stroke can range from motor to cognitive-affective impairments. Topographic imaging studies from patients with lesions confined to the cerebellum have shown evidence linking anterior cerebellar lobules with motor function and posterior lobules with cognitive function. Damage to the cerebellum can disrupt functional connectivity in cerebellar stroke patients, as it is highly interconnected with forebrain motor and cognitive areas.
View Article and Find Full Text PDFHippocampal cell death and cognitive dysfunction are common following global cerebral ischemia across all ages, including children. Most research has focused on preventing neuronal death. Restoration of neuronal function after cell death is an alternative approach (neurorestoration).
View Article and Find Full Text PDFExposure to sedative/hypnotic and anesthetic drugs, such as ketamine, during the critical period of synaptogenesis, causes profound neurotoxicity in the developing rodent and primate brains and is associated with poor cognitive outcomes later in life. The subiculum is especially vulnerable to acute neurotoxicity after neonatal exposure to sedative/hypnotic and anesthetic drugs. The subiculum acts as a relay center between the hippocampal complex and various cortical and subcortical brain regions and is also an independent generator of gamma oscillations.
View Article and Find Full Text PDFImportance: The novel coronavirus 2019 (SARS-CoV-2) has been well described in adults. Further, the impact on older children and during the perinatal time is becoming better studied. As community spread increases, it is important to recognize that neonates are vulnerable to community spread as well.
View Article and Find Full Text PDFHippocampal injury and cognitive impairments are common after cardiac arrest and stroke and do not have an effective intervention despite much effort. Therefore, we developed a new approach aimed at reversing synaptic dysfunction by targeting TRPM2 channels. Cardiac arrest/cardiopulmonary resuscitation (CA/CPR) in mice was used to investigate cognitive deficits and the role of the calcium-permeable ion channel transient receptor potential-M2 (TRPM2) in ischemia-induced synaptic dysfunction.
View Article and Find Full Text PDFThe incidence of stroke in children is 2.4 per 100,000 person-years and results in long-term motor and cognitive disability. In ischemic stroke, white matter (WM) is frequently injured, but is relatively understudied compared to grey matter injury.
View Article and Find Full Text PDFIschemic stroke is a leading cause of death worldwide and clinical data suggest that children may recover from stroke better than adults; however, supporting experimental data are lacking. We used our novel mouse model of experimental juvenile ischemic stroke (MCAO) to characterize age-specific cognitive dysfunction following ischemia. Juvenile and adult mice subjected to 45-min MCAO, and extracellular field recordings of CA1 neurons were performed to assess hippocampal synaptic plasticity changes after MCAO, and contextual fear conditioning was performed to evaluate memory and biochemistry used to analyze Nogo-A expression.
View Article and Find Full Text PDFSeptic patients frequently develop cognitive impairment that persists beyond hospital discharge. The impact of sepsis on electrophysiological and molecular determinants of learning is underexplored. We observed that mice that survived sepsis or endotoxemia experienced loss of hippocampal long-term potentiation (LTP), a brain-derived neurotrophic factor-mediated (BDNF-mediated) process responsible for spatial memory formation.
View Article and Find Full Text PDFIschemic long-term potentiation (iLTP) is a form of synaptic plasticity that occurs in acute brain slices following oxygen-glucose deprivation. , iLTP can occlude physiological LTP (pLTP) through saturation of plasticity mechanisms. We used our murine cardiac arrest and cardiopulmonary resuscitation (CA/CPR) model to produce global brain ischemia and assess whether iLTP is induced , contributing to the functionally relevant impairment of pLTP.
View Article and Find Full Text PDFGlobal ischemia in childhood often leads to poor neurologic outcomes, including learning and memory deficits. Using our novel model of childhood cardiac arrest/cardiopulmonary resuscitation (CA/CPR), we investigate the mechanism of ischemia-induced cognitive deficits and recovery. Memory is impaired seven days after juvenile CA/CPR and completely recovers by 30 days.
View Article and Find Full Text PDFThe role of biological sex in short-term and long-term outcome after traumatic brain injury (TBI) remains controversial. The observation that exogenous female sex steroids (progesterone and estrogen) reduce brain injury coupled with a small number of clinical studies showing smaller injury in women suggest that sex steroids may play a role in outcome from TBI. We used the controlled cortical impact (CCI) model of TBI in mice to test the hypothesis that after CCI, female mice would demonstrate less injury than male mice, related to the protective role of endogenous steroids.
View Article and Find Full Text PDFMyelin, the insulating sheath around axons, supports axon function. An important question is the impact of mild myelin disruption. In the absence of the myelin protein proteolipid protein (PLP1), myelin is generated but with age, axonal function/maintenance is disrupted.
View Article and Find Full Text PDFThe current study focuses on the ability to improve cognitive function after stroke with interventions administered at delayed/chronic time points. In light of recent studies demonstrating delayed GABA antagonists improve motor function, we utilized electrophysiology, biochemistry and neurobehavioral methods to investigate the role of α5 GABAA receptors on hippocampal plasticity and functional recovery following ischemic stroke. Male C57Bl/6 mice were exposed to 45 min transient middle cerebral artery occlusion and analysis of synaptic and functional deficits performed 7 or 30 days after recovery.
View Article and Find Full Text PDFThe innate immune system has evolved to play an integral role in the normally developing lung and brain. However, in response to oxidative stress, innate immunity, mediated by specific cellular and molecular programs and signaling, contributes to pathology in these same organ systems. Despite opposing drivers of oxidative stress, namely hyperoxia in neonatal lung injury and hypoxia/ischemia in neonatal brain injury, similar pathways-including toll-like receptors, NFκB and MAPK cascades-have been implicated in tissue damage.
View Article and Find Full Text PDFKey Points: Pharmacological, molecular and genetic data indicate a prominent role of low-voltage-activated T-type calcium channels (T-channels) in the firing activity of both pyramidal and inhibitory interneurons in the subiculum. Pharmacological inhibition of T-channels switched burst firing with lower depolarizing stimuli to regular spiking, and fully abolished hyperpolarization-induced burst firing. Our molecular studies showed that Ca 3.
View Article and Find Full Text PDFThe Ca/calmodulin-dependent protein kinase II (CaMKII) is a major mediator of physiological glutamate signaling, but its role in pathological glutamate signaling (excitotoxicity) remains less clear, with indications for both neuro-toxic and neuro-protective functions. Here, the role of CaMKII in ischemic injury is assessed utilizing our mouse model of cardiac arrest and cardiopulmonary resuscitation (CA/CPR). CaMKII inhibition (with tatCN21 or tatCN19o) at clinically relevant time points (30 min after resuscitation) greatly reduces neuronal injury.
View Article and Find Full Text PDF