We generated asynchronous functional networks (aFNs) using a novel method called optimal causation entropy and compared aFN topology with the correlation-based synchronous functional networks (sFNs), which are commonly used in network neuroscience studies. Functional magnetic resonance imaging (fMRI) time series from 212 participants of the National Consortium on Alcohol and Neurodevelopment in Adolescence study were used to generate aFNs and sFNs. As a demonstration of how aFNs and sFNs can be used in tandem, we used multivariate mixed effects models to determine whether age interacted with node efficiency to influence connection probabilities in the two networks.
View Article and Find Full Text PDFWe generated asynchronous functional networks (aFNs) using a novel method called optimal causation entropy (oCSE) and compared aFN topology to the correlation-based synchronous functional networks (sFNs) which are commonly used in network neuroscience studies. Functional magnetic resonance imaging (fMRI) time series from 212 participants of the National Consortium on Alcohol and NeuroDevelopment in Adolescence (NCANDA) study were used to generate aFNs and sFNs. As a demonstration of how aFNs and sFNs can be used in tandem, we used multivariate mixed effects models to determine whether age interacted with node efficiency to influence connection probabilities in the two networks.
View Article and Find Full Text PDFDeclining physical function with aging is associated with structural and functional brain network organization. Gaining a greater understanding of network associations may be useful for targeting interventions that are designed to slow or prevent such decline. Our previous work demonstrated that the Short Physical Performance Battery (eSPPB) score and body mass index (BMI) exhibited a statistical interaction in their associations with connectivity in the sensorimotor cortex (SMN) and the dorsal attention network (DAN).
View Article and Find Full Text PDFApproximately 6 million youth aged 12 to 20 consume alcohol monthly in the United States. The effect of alcohol consumption in adolescence on behavior and cognition is heavily researched; however, little is known about how alcohol consumption in adolescence may alter brain function, leading to long-term developmental detriments. In order to investigate differences in brain connectivity associated with alcohol use in adolescents, brain networks were constructed using resting-state functional magnetic resonance imaging data collected by the National Consortium on Alcohol and NeuroDevelopment in Adolescence (NCANDA) from 698 youth (12-21 years; 117 hazardous drinkers and 581 no/low drinkers).
View Article and Find Full Text PDFBrain network analyses have exploded in recent years and hold great potential in helping us understand normal and abnormal brain function. Network science approaches have facilitated these analyses and our understanding of how the brain is structurally and functionally organized. However, the development of statistical methods that allow relating this organization to phenotypic traits has lagged behind.
View Article and Find Full Text PDFDeficits in physical function that occur with aging contribute to declines in quality of life and increased mortality. There has been a growing interest in examining associations between physical function and neurobiology. Whereas high levels of white matter disease have been found in individuals with mobility impairments in structural brain studies, much less is known about the relationship between physical function and functional brain networks.
View Article and Find Full Text PDFFunctional neural activities manifest geometric patterns, as evidenced by the evolving network topology of functional connectivities (FC) even in the resting state. In this work, we propose a novel manifold-based geometric neural network for functional brain networks (called "Geo-Net4Net" for short) to learn the intrinsic low-dimensional feature representations of resting-state brain networks on the Riemannian manifold. This tool allows us to answer the scientific question of how the spontaneous fluctuation of FC supports behavior and cognition.
View Article and Find Full Text PDFPesticide exposure has been associated with adverse cognitive and neurological effects. However, neuroimaging studies aimed at examining the impacts of pesticide exposure on brain networks underlying abnormal neurodevelopment in children remain limited. It has been demonstrated that pesticide exposure in children is associated with disrupted brain anatomy in regions that make up the default mode network (DMN), a subnetwork engaged across a diverse set of cognitive processes, particularly higher-order cognitive tasks.
View Article and Find Full Text PDFAnalyzing brain networks has long been a prominent research topic in neuroimaging. However, statistical methods to detect differences between these networks and relate them to phenotypic traits are still sorely needed. Our previous work developed a novel permutation testing framework to detect differences between two groups.
View Article and Find Full Text PDFAlzheimer's disease has profound effects on quality of life, affecting not only cognition, but mobility and opportunities for social engagement. Dance is a form of movement that may be uniquely suited to help maintain quality of life for older adults, including those with dementia, because it inherently incorporates movement, social engagement, and cognitive stimulation. Here, we describe the methods and results of the pilot study for the IMOVE trial (NCT03333837, www.
View Article and Find Full Text PDFfMRI data is inherently high-dimensional and difficult to visualize. A recent trend has been to find spaces of lower dimensionality where functional brain networks can be projected onto manifolds as individual data points, leading to new ways to analyze and interpret the data. Here, we investigate the potential of two powerful non-linear manifold learning techniques for functional brain networks representation: (1) T-stochastic neighbor embedding (t-SNE) and (2) Uniform Manifold Approximation Projection (UMAP) a recent breakthrough in manifold learning.
View Article and Find Full Text PDFElucidating the neural correlates of mobility is critical given the increasing population of older adults and age-associated mobility disability. In the current study, we applied graph theory to cross-sectional data to characterize functional brain networks generated from functional magnetic resonance imaging data both at rest and during a motor imagery (MI) task. Our MI task is derived from the Mobility Assessment Tool-short form (MAT-sf), which predicts performance on a 400 m walk, and the Short Physical Performance Battery (SPPB).
View Article and Find Full Text PDFAs the field of dynamic brain networks continues to expand, new methods are needed to allow for optimal handling and understanding of this explosion in data. We propose here a novel approach that embeds dynamic brain networks onto a two-dimensional (2D) manifold based on similarities and differences in network organization. Each brain network is represented as a single point on the low dimensional manifold with networks of similar topology being located in close proximity.
View Article and Find Full Text PDFOlder adults today consume more alcohol than previous generations, the majority being social drinkers. The effects of heavy alcohol use on brain functioning closely resemble age-related changes, but it is not known if moderate-heavy alcohol consumption intensifies brain aging. Whether a lifestyle of moderate-heavy alcohol use in older adults increased age-related brain changes was examined.
View Article and Find Full Text PDFThe primary aim of this study was to examine changes in functional brain network organization from rest to the Iowa Gambling Task (IGT) using a graph-theoretical approach. Although many functional neuroimaging studies have examined task-based activations in complex-decision making tasks, changes in functional network organization during this task remain unexplored. This study used a repeated-measures approach to examine changes in functional network organization across multiple sessions of resting-state and IGT scans.
View Article and Find Full Text PDFObjective: Migrant tobacco farmworkers experience regular occupational exposure to pesticides and nicotine. The present study was designed to determine whether there are differences in brain anatomy between Latino farmworkers and non-farmworkers.
Methods: Magnetic resonance brain images were compared between farmworkers and non-farmworkers.
Obesity is a public health crisis in North America. While lifestyle interventions for weight loss (WL) remain popular, the rate of success is highly variable. Clearly, self-regulation of eating behavior is a challenge and patterns of activity across the brain may be an important determinant of success.
View Article and Find Full Text PDFWorking memory is a complex psychological construct referring to the temporary storage and active processing of information. We used functional connectivity brain network metrics quantifying local and global efficiency of information transfer for predicting individual variability in working memory performance on an n-back task in both young (n = 14) and older (n = 15) adults. Individual differences in both local and global efficiency during the working memory task were significant predictors of working memory performance in addition to age (and an interaction between age and global efficiency).
View Article and Find Full Text PDFUsing graph theory measures common to complex network analyses of neuroimaging data, the objective of this study was to explore the effects of increasing working memory processing load on functional brain network topology in a cohort of young adults. Measures of modularity in complex brain networks quantify how well a network is organized into densely interconnected communities. We investigated changes in both the large-scale modular organization of the functional brain network as a whole and regional changes in modular organization as demands on working memory increased from n = 1 to n = 2 on the standard n-back task.
View Article and Find Full Text PDFFront Comput Neurosci
December 2013
Brain network analyses have moved to the forefront of neuroimaging research over the last decade. However, methods for statistically comparing groups of networks have lagged behind. These comparisons have great appeal for researchers interested in gaining further insight into complex brain function and how it changes across different mental states and disease conditions.
View Article and Find Full Text PDFNetwork science holds great promise for expanding our understanding of the human brain in health, disease, development, and aging. Network analyses are quickly becoming the method of choice for analyzing functional MRI data. However, many technical issues have yet to be confronted in order to optimize results.
View Article and Find Full Text PDF