The analytical techniques typically utilized in a nuclear forensic investigation often provide limited information regarding the process history and production conditions of interdicted nuclear material. In this study, scanning electron microscopy (SEM) analysis of the surface morphology of amorphous-UO samples calcined at 250, 300, 350, 400, and 450°C from uranyl peroxide was performed to determine if the morphology was indicative of the synthesis route and thermal history for the samples. Thermogravimetic analysis-mass spectrometry (TGA-MS) and differential scanning calorimetry (DSC) were used to correlate transitions in the calcined material to morphological transformations.
View Article and Find Full Text PDFMorphological changes in UO based on calcination temperature have been quantified enabling a morphological feature to serve as a signature of processing history in nuclear forensics. Five separate calcination temperatures were used to synthesize α-UO, and each sample was characterized using powder X-ray diffraction (p-XRD) and scanning electron microscopy (SEM). The p-XRD spectra were used to evaluate the purity of the synthesized U-oxide; the morphological analysis for materials (MAMA) software was utilized to quantitatively characterize the particle shape and size as indicated by the SEM images.
View Article and Find Full Text PDF