The presence of pharmaceuticals and personal care products (PPCPs) in water remains a concern due to their potential threat to environmental and human health. Advanced oxidation processes (AOPs) have been receiving attention in water treatment studies to remove PPCPs. However, most studies have been focused on pure water containing a limited number of substances.
View Article and Find Full Text PDFIn this work, C-doped TiO nanorods were synthesized through doping carbon black into hydrothermally synthesized solid-state TiO nanowires (NWs) via calcination. The effects of carbon content on the morphology, phase structure, crystal structure, and photocatalytic property under both UV and solar light by the degradation of methylene blue (MB) were explored. Besides, the photoelectrochemical property of C-TiO was systematically studied to illustrate the solar light degradation mechanism.
View Article and Find Full Text PDFTitanium dioxide (TiO) is a wide bandgap semiconductor that is chemically stable, non-toxic, and economical compared to other semiconductors and has been implemented in a wide range of applications such as photocatalysis, photovoltaics, and memristors. In this work we studied the femtosecond laser ablation of titanium dioxide powders (P25) dispersed either in water or deposited onto a fluoride-doped tin oxide (FTO) substrate. The process was used as a route to induce the phase-transformation of TiO nanoparticles which was governed by laser parameters such as ablation time and power.
View Article and Find Full Text PDFThe removal of endocrine disrupting compounds (EDCs) remains a big challenge in water treatment. Risks associated with these compounds are not clearly defined and it is important that the water industry has additional options to increase the resiliency of water treatment systems. Titanium dioxide (TiO2) has potential applications for the removal of EDCs from water.
View Article and Find Full Text PDFOrganic micropollutants found in the environment are a diverse group of compounds that includes pharmaceuticals, personal care products, and endocrine disruptors. Their presence in the aquatic environment continues to be a concern as the risk they pose towards both the environment and human health is still inconclusive. Removal of these compounds from water and wastewater is difficult to achieve and often incomplete, but UV-TiO2 is a promising treatment approach.
View Article and Find Full Text PDFIn the last few years, graphene quantum dots (GQDs) have attracted the attention of many research groups for their outstanding properties, which include low toxicity, chemical stability and photoluminescence. One of the challenges of GQD synthesis is finding a single-step, cheap and sustainable approach for synthesizing these promising nanomaterials. In this study, we demonstrate that femtosecond laser ablation of graphene oxide (GO) dispersions could be employed as a facile and environmentally friendly synthesis method for GQDs.
View Article and Find Full Text PDF