Expert curation is essential to capture knowledge of enzyme functions from the scientific literature in FAIR open knowledgebases but cannot keep pace with the rate of new discoveries and new publications. In this work we present EnzChemRED, for Enzyme Chemistry Relation Extraction Dataset, a new training and benchmarking dataset to support the development of Natural Language Processing (NLP) methods such as (large) language models that can assist enzyme curation. EnzChemRED consists of 1,210 expert curated PubMed abstracts where enzymes and the chemical reactions they catalyze are annotated using identifiers from the protein knowledgebase UniProtKB and the chemical ontology ChEBI.
View Article and Find Full Text PDFExpert curation is essential to capture knowledge of enzyme functions from the scientific literature in FAIR open knowledgebases but cannot keep pace with the rate of new discoveries and new publications. In this work we present EnzChemRED, for Enzyme Chemistry Relation Extraction Dataset, a new training and benchmarking dataset to support the development of Natural Language Processing (NLP) methods such as (large) language models that can assist enzyme curation. EnzChemRED consists of 1,210 expert curated PubMed abstracts in which enzymes and the chemical reactions they catalyze are annotated using identifiers from the UniProt Knowledgebase (UniProtKB) and the ontology of Chemical Entities of Biological Interest (ChEBI).
View Article and Find Full Text PDFBiomedical research yields vast information, much of which is only accessible through the literature. Consequently, literature search is crucial for healthcare and biomedicine. Recent improvements in artificial intelligence (AI) have expanded functionality beyond keywords, but they might be unfamiliar to clinicians and researchers.
View Article and Find Full Text PDFMotivation: Biomedical named entity recognition (BioNER) seeks to automatically recognize biomedical entities in natural language text, serving as a necessary foundation for downstream text mining tasks and applications such as information extraction and question answering. Manually labeling training data for the BioNER task is costly, however, due to the significant domain expertise required for accurate annotation. The resulting data scarcity causes current BioNER approaches to be prone to overfitting, to suffer from limited generalizability, and to address a single entity type at a time (e.
View Article and Find Full Text PDFThe BioCreative National Library of Medicine (NLM)-Chem track calls for a community effort to fine-tune automated recognition of chemical names in the biomedical literature. Chemicals are one of the most searched biomedical entities in PubMed, and-as highlighted during the coronavirus disease 2019 pandemic-their identification may significantly advance research in multiple biomedical subfields. While previous community challenges focused on identifying chemical names mentioned in titles and abstracts, the full text contains valuable additional detail.
View Article and Find Full Text PDFA significant percentage of COVID-19 survivors experience ongoing multisystemic symptoms that often affect daily living, a condition known as Long Covid or post-acute-sequelae of SARS-CoV-2 infection. However, identifying scientific articles relevant to Long Covid is challenging since there is no standardized or consensus terminology. We developed an iterative human-in-the-loop machine learning framework combining data programming with active learning into a robust ensemble model, demonstrating higher specificity and considerably higher sensitivity than other methods.
View Article and Find Full Text PDFThe automatic recognition of chemical names and their corresponding database identifiers in biomedical text is an important first step for many downstream text-mining applications. The task is even more challenging when considering the identification of these entities in the article's full text and, furthermore, the identification of candidate substances for that article's metadata [Medical Subject Heading (MeSH) article indexing]. The National Library of Medicine (NLM)-Chem track at BioCreative VII aimed to foster the development of algorithms that can predict with high quality the chemical entities in the biomedical literature and further identify the chemical substances that are candidates for article indexing.
View Article and Find Full Text PDFNucleic Acids Res
January 2023
LitCovid (https://www.ncbi.nlm.
View Article and Find Full Text PDFThe coronavirus disease 2019 (COVID-19) pandemic has been severely impacting global society since December 2019. The related findings such as vaccine and drug development have been reported in biomedical literature-at a rate of about 10 000 articles on COVID-19 per month. Such rapid growth significantly challenges manual curation and interpretation.
View Article and Find Full Text PDFThe COVID-19 (coronavirus disease 2019) pandemic has had a significant impact on society, both because of the serious health effects of COVID-19 and because of public health measures implemented to slow its spread. Many of these difficulties are fundamentally information needs; attempts to address these needs have caused an information overload for both researchers and the public. Natural language processing (NLP)-the branch of artificial intelligence that interprets human language-can be applied to address many of the information needs made urgent by the COVID-19 pandemic.
View Article and Find Full Text PDFAutomatically identifying chemical and drug names in scientific publications advances information access for this important class of entities in a variety of biomedical disciplines by enabling improved retrieval and linkage to related concepts. While current methods for tagging chemical entities were developed for the article title and abstract, their performance in the full article text is substantially lower. However, the full text frequently contains more detailed chemical information, such as the properties of chemical compounds, their biological effects and interactions with diseases, genes and other chemicals.
View Article and Find Full Text PDFPubMed is a widely used search engine for biomedical literature. It is developed and maintained by the US National Library of Medicine/National Center for Biotechnology Information and is visited daily by millions of users around the world. For decades, PubMed has used advanced artificial intelligence technologies that extract patterns of collective user activity, such as machine learning and natural language processing, to inform the algorithmic changes that ultimately improve a user's search experience.
View Article and Find Full Text PDFRecently, advanced text-mining techniques have been shown to speed up manual data curation by providing human annotators with automated pre-annotations generated by rules or machine learning models. Due to the limited training data available, however, current annotation systems primarily focus only on common concept types such as genes or diseases. To support annotating a wide variety of biological concepts with or without pre-existing training data, we developed ezTag, a web-based annotation tool that allows curators to perform annotation and provide training data with humans in the loop.
View Article and Find Full Text PDFText mining in the biomedical sciences is rapidly transitioning from small-scale evaluation to large-scale application. In this article, we argue that text-mining technologies have become essential tools in real-world biomedical research. We describe four large scale applications of text mining, as showcased during a recent panel discussion at the BioCreative V Challenge Workshop.
View Article and Find Full Text PDFBioinformatics
September 2016
Motivation: Text mining is increasingly used to manage the accelerating pace of the biomedical literature. Many text mining applications depend on accurate named entity recognition (NER) and normalization (grounding). While high performing machine learning methods trainable for many entity types exist for NER, normalization methods are usually specialized to a single entity type.
View Article and Find Full Text PDFThe significant amount of medicinal chemistry information contained in patents makes them an attractive target for text mining. In this manuscript, we describe systems for named entity recognition (NER) of chemicals and genes/proteins in patents, using the CEMP (for chemicals) and GPRO (for genes/proteins) corpora provided by the CHEMDNER task at BioCreative V. Our chemical NER system is an ensemble of five open systems, including both versions of tmChem, our previous work on chemical NER.
View Article and Find Full Text PDFCommunity-run, formal evaluations and manually annotated text corpora are critically important for advancing biomedical text-mining research. Recently in BioCreative V, a new challenge was organized for the tasks of disease named entity recognition (DNER) and chemical-induced disease (CID) relation extraction. Given the nature of both tasks, a test collection is required to contain both disease/chemical annotations and relation annotations in the same set of articles.
View Article and Find Full Text PDFManually curating chemicals, diseases and their relationships is significantly important to biomedical research, but it is plagued by its high cost and the rapid growth of the biomedical literature. In recent years, there has been a growing interest in developing computational approaches for automatic chemical-disease relation (CDR) extraction. Despite these attempts, the lack of a comprehensive benchmarking dataset has limited the comparison of different techniques in order to assess and advance the current state-of-the-art.
View Article and Find Full Text PDFUnlabelled: The biomedical literature is a knowledge-rich resource and an important foundation for future research. With over 24 million articles in PubMed and an increasing growth rate, research in automated text processing is becoming increasingly important. We report here our recently developed web-based text mining services for biomedical concept recognition and normalization.
View Article and Find Full Text PDFJ Biomed Inform
October 2015
Background: Identifying key variables such as disorders within the clinical narratives in electronic health records has wide-ranging applications within clinical practice and biomedical research. Previous research has demonstrated reduced performance of disorder named entity recognition (NER) and normalization (or grounding) in clinical narratives than in biomedical publications. In this work, we aim to identify the cause for this performance difference and introduce general solutions.
View Article and Find Full Text PDF