Endoplasmic reticulum aminopeptidase 1 (ERAP1) cleaves the -terminal amino acids of peptides, which can then bind onto major histocompatibility class I (MHC-I) molecules for presentation onto the cell surface, driving the activation of adaptive immune responses. In cancer, overtrimming of mature antigenic peptides can reduce cytotoxic T-cell responses, and ERAP1 can generate self-antigenic peptides which contribute to autoimmune cellular responses. Therefore, modulation of ERAP1 activity has potential therapeutic indications for cancer immunotherapy and in autoimmune disease.
View Article and Find Full Text PDFPlatelet activation is critical for haemostasis, but if unregulated can lead to pathological thrombosis. Endogenous platelet inhibitory mechanisms are mediated by prostacyclin (PGI)-stimulated cAMP signalling, which is regulated by phosphodiesterase 3A (PDE3A). However, spatiotemporal regulation of PDE3A activity in platelets is unknown.
View Article and Find Full Text PDFHigh pressure is both an environmental challenge to which deep sea biology has to adapt, and a highly sensitive thermodynamic tool that can be used to trigger structural changes in biological molecules and assemblies. Lipid membranes are amongst the most pressure sensitive biological assemblies and pressure can have a large influence on their structure and properties. In this chapter, we will explore the use of high pressure small angle X-ray diffraction and high pressure microscopy to measure and quantify changes in the lateral structure of lipid membranes under both equilibrium high pressure conditions and in response to pressure jumps.
View Article and Find Full Text PDFEven under spontaneous conditions and in the absence of changing environmental demands, awake animals alternate between increased or decreased periods of alertness. These changes in brain state can occur rapidly, on a timescale of seconds, and neuromodulators such as acetylcholine (ACh) are thought to play an important role in driving these spontaneous state transitions. Here, we perform the first simultaneous imaging of ACh sensors and GCaMP-expressing axons , to examine the spatiotemporal properties of cortical ACh activity and release during spontaneous changes in behavioral state.
View Article and Find Full Text PDFBackground: Multiple facets of sleep neurophysiology, including electroencephalography (EEG) metrics such as non-rapid eye movement (NREM) spindles and slow oscillations (SO), are altered in individuals with schizophrenia (SCZ). However, beyond group-level analyses which treat all patients as a unitary set, the extent to which NREM deficits vary among patients is unclear, as are their relationships to other sources of heterogeneity including clinical factors, illness duration and ageing, cognitive profiles and medication regimens. Using newly collected high density sleep EEG data on 103 individuals with SCZ and 68 controls, we first sought to replicate our previously reported (Kozhemiako et.
View Article and Find Full Text PDFProteolysis targeting chimeras (PROTACs) are heterobifunctional molecules that co-opt the cell's natural proteasomal degradation mechanisms to degrade undesired proteins. A challenge associated with PROTACs is the time and resource-intensive optimization; thus, the development of high-throughput platforms for their synthesis and biological evaluation is required. In this study, we establish an ultra-high-throughput experimentation (ultraHTE) platform for PROTAC synthesis, followed by direct addition of the crude reaction mixtures to cellular degradation assays without any purification.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 2023
Artificial cells are biomimetic structures formed from molecular building blocks that replicate biological processes, behaviors, and architectures. Of these building blocks, hydrogels have emerged as ideal, yet underutilized candidates to provide a gel-like chassis in which to incorporate both biological and nonbiological componentry which enables the replication of cellular functionality. Here, we demonstrate a microfluidic strategy to assemble biocompatible cell-sized hydrogel-based artificial cells with a variety of different embedded functional subcompartments, which act as engineered synthetic organelles.
View Article and Find Full Text PDFBackground: The neck region is an area that can be indicative of signs of skin aging. A novel topical product that combines multiple active ingredients including retinol, tripeptide and glaucine was formulated to specifically target neck aging correction and complement post-procedure as part of an integrated skincare regimen.
Objectives: To evaluate the efficacy of a topical neck treatment through clinical subject evaluation, in addition to ultrasound and biopsy assessment.
Uncertainty associated with ice sheet motion plagues sea level rise predictions. Much of this uncertainty arises from imperfect representations of physical processes including basal slip and internal ice deformation, with ice sheet models largely incapable of reproducing borehole-based observations. Here, we model isolated three-dimensional domains from fast-moving (Sermeq Kujalleq/Store Glacier) and slow-moving (Isunnguata Sermia) ice sheet settings in Greenland.
View Article and Find Full Text PDFCells tune adherens junction dynamics to regulate epithelial integrity in diverse (patho)physiological processes, including cancer metastasis. We hypothesized that the spatially confining architecture of peritumor stroma promotes metastatic cell dissemination by remodeling cell-cell adhesive interactions. By combining microfluidics with live-cell imaging, FLIM/FRET biosensors, and optogenetic tools, we show that confinement induces leader cell dissociation from cohesive ensembles.
View Article and Find Full Text PDFSimple diffusion of molecular entities through a phospholipid bilayer, is a phenomenon of great importance to the pharmaceutical and agricultural industries. Current model lipid systems to probe this typically only employ fluorescence as a readout, thus limiting the range of assessable chemical matter that can be studied. We report a new technology platform, the UV-DIB, which facilitates label free measurement of small molecule translocation rates.
View Article and Find Full Text PDFThe interactions between small molecules and keratins are poorly understood. In this paper, a nuclear magnetic resonance method is presented to measure changes in the H relaxation times of small molecules in human hair keratin to quantify their interaction with the fibre. Two populations of small-molecule compounds were identified with distinct relaxation times, demonstrating the partitioning of the compounds into different keratin environments.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
October 2021
Focal adhesion kinase (FAK) is a key mediator of tumour progression and metastasis. To date, clinical trials of FAK inhibitors have reported disappointing efficacy for oncology indications. We report the design and characterisation of GSK215, a potent, selective, FAK-degrading Proteolysis Targeting Chimera (PROTAC) based on a binder for the VHL E3 ligase and the known FAK inhibitor VS-4718.
View Article and Find Full Text PDFTransient neocortical events with high spectral power in the 15-29 Hz beta band are among the most reliable predictors of sensory perception. Prestimulus beta event rates in primary somatosensory cortex correlate with sensory suppression, most effectively 100-300 ms before stimulus onset. However, the neural mechanisms underlying this perceptual association are unknown.
View Article and Find Full Text PDFDroplet microcompartments linked by lipid bilayers show great promise in the construction of synthetic minimal tissues. Central to controlling the flow of information in these systems are membrane proteins, which can gate in response to specific stimuli in order to control the molecular flux between membrane separated compartments. This has been demonstrated with droplet interface bilayers (DIBs) using several different membrane proteins combined with electrical, mechanical, and/or chemical activators.
View Article and Find Full Text PDFTargeted protein degradation is an emerging new strategy for the modulation of intracellular protein levels with applications in chemical biology and drug discovery. One approach to enable this strategy is to redirect the ubiquitin-proteasome system to mark and degrade target proteins of interest (POIs) through the use of proteolysis targeting chimeras (PROTACs). Although great progress has been made in enabling PROTACs as a platform, there are still a limited number of E3 ligases that have been employed for PROTAC design.
View Article and Find Full Text PDFMeasurements of ice temperature provide crucial constraints on ice viscosity and the thermodynamic processes occurring within a glacier. However, such measurements are presently limited by a small number of relatively coarse-spatial-resolution borehole records, especially for ice sheets. Here, we advance our understanding of glacier thermodynamics with an exceptionally high-vertical-resolution (~0.
View Article and Find Full Text PDFChem Commun (Camb)
November 2020
Cholesterol is a crucial component of biological membranes and can interact with other membrane components through hydrogen bonding. NMR spectroscopy has been used previously to investigate this bonding, however this study represents the first 17O NMR spectroscopy study of isotopically enriched cholesterol. We demonstrate the 17O chemical shift is dependent on hydrogen bonding, providing a novel method for the study of cholesterol in bilayers.
View Article and Find Full Text PDFHow migrating cells differentially adapt and respond to extracellular track geometries remains unknown. Using intravital imaging, we demonstrate that invading cells exhibit dorsoventral (top-to-bottom) polarity in vivo. To investigate the impact of dorsoventral polarity on cell locomotion through different confining geometries, we fabricated microchannels of fixed cross-sectional area, albeit with distinct aspect ratios.
View Article and Find Full Text PDFDispersions of nonlamellar lipid membrane assemblies are gaining increasing interest for drug delivery and protein therapeutic application. A key bottleneck has been the lack of rational design rules for these systems linking different lipid species and conditions to defined lattice parameters and structures. We have developed robust methods to form cubosomes (nanoparticles with porous internal structures) with water channel diameters of up to 171 Å, which are over 4 times larger than archetypal cubosome structures.
View Article and Find Full Text PDFCells migrate in vivo through complex confining microenvironments, which induce significant nuclear deformation that may lead to nuclear blebbing and nuclear envelope rupture. While actomyosin contractility has been implicated in regulating nuclear envelope integrity, the exact mechanism remains unknown. Here, we argue that confinement-induced activation of RhoA/myosin-II contractility, coupled with LINC complex-dependent nuclear anchoring at the cell posterior, locally increases cytoplasmic pressure and promotes passive influx of cytoplasmic constituents into the nucleus without altering nuclear efflux.
View Article and Find Full Text PDF