Background: Nutrition research is relying more on artificial intelligence and machine learning models to understand, diagnose, predict, and explain data. While artificial intelligence and machine learning models provide powerful modeling tools, failure to use careful and well-thought-out modeling processes can lead to misleading conclusions and concerns surrounding ethics and bias.
Methods: Based on our experience as reviewers and journal editors in nutrition and obesity, we identified the most frequently omitted best practices from statistical modeling and how these same practices extend to machine learning models.
Background: When a lifestyle intervention combines caloric restriction and increased physical activity energy expenditure (PAEE), there are two components of energy balance, energy intake (EI) and physical activity energy expenditure (PAEE), that are routinely misreported and expensive to measure. Energy balance models have successfully predicted EI if PAEE is known. Estimating EI from an energy balance model when PAEE is not known remains an open question.
View Article and Find Full Text PDF