Water resource management decisions often depend on mechanistic or empirical models to predict water quality conditions under future pollutant loading scenarios. These decisions, such as whether or not to restrict public access to a water resource area, may therefore vary depending on how models reflect process, observation, and analytical uncertainty and variability. Nonetheless, few probabilistic modeling tools have been developed which explicitly propagate fecal indicator bacteria (FIB) analysis uncertainty into predictive bacterial water quality model parameters and response variables.
View Article and Find Full Text PDFFecal indicator bacteria (FIB) are commonly used to assess the threat of pathogen contamination in coastal and inland waters. Unlike most measures of pollutant levels however, FIB concentration metrics, such as most probable number (MPN) and colony-forming units (CFU), are not direct measures of the true in situ concentration distribution. Therefore, there is the potential for inconsistencies among model and sample-based water quality assessments, such as those used in the Total Maximum Daily Load (TMDL) program.
View Article and Find Full Text PDFMost probable number (MPN) and colony-forming-unit (CFU) estimates of fecal coliform bacteria concentration are common measures of water quality in coastal shellfish harvesting and recreational waters. Estimating procedures for MPN and CFU have intrinsic variability and are subject to additional uncertainty arising from minor variations in experimental protocol. It has been observed empirically that the standard multiple-tube fermentation (MTF) decimal dilution analysis MPN procedure is more variable than the membrane filtration CFU procedure, and that MTF-derived MPN estimates are somewhat higher on average than CFU estimates, on split samples from the same water bodies.
View Article and Find Full Text PDFRapid tastant detection is necessary to prevent the ingestion of potentially poisonous compounds. Behavioral studies have shown that rats can identify tastants in approximately 200 ms, although the electrophysiological correlates for fast tastant detection have not been identified. For this reason, we investigated whether neurons in the primary gustatory cortex (GC), a cortical area necessary for tastant identification and discrimination, contain sufficient information in a single lick cycle, or approximately 150 ms, to distinguish between tastants at different concentrations.
View Article and Find Full Text PDF