Publications by authors named "Robert L Wardle"

Article Synopsis
  • GAL-021 is a new drug that enhances breathing and counters the respiratory depression caused by opioids like morphine, without affecting pain relief in rats.
  • The study involved various methods to evaluate GAL-021's effects on ventilation, opioid analgesia, and blood pressure in both rodents and nonhuman primates.
  • Results showed GAL-021 primarily works through the carotid body by inhibiting specific potassium channels, indicating its potential for treating breathing disorders related to opioid use and conditions like sleep apnea.
View Article and Find Full Text PDF

Atypical models of experimental autoimmune encephalomyelitis (EAE) are advantageous in that the heterogeneity of clinical signs appears more reflective of those in multiple sclerosis (MS). Conversely, models of classical EAE feature stereotypic progression of an ascending flaccid paralysis that is not a characteristic of MS. The study of atypical EAE however has been limited due to the relative lack of suitable models that feature reliable disease incidence and severity, excepting mice deficient in gamma-interferon signaling pathways.

View Article and Find Full Text PDF

Background: Biomarkers facilitate early detection of disease and measurement of therapeutic efficacy, both at clinical and experimental levels. Recent advances in analytics and disease models allow comprehensive screening for biomarkers in complex diseases, such as asthma, that was previously not feasible.

Objective: Using murine and nonhuman primate (NHP) models of asthma, identify biomarkers associated with early and chronic stages of asthma and responses to steroid treatment.

View Article and Find Full Text PDF

Nocturnal bronchoconstriction is a common symptom of asthma in humans, but is poorly documented in animal models. Thoracoabdominal asynchrony (TAA) is a noninvasive clinical indication of airway obstruction. In this study, respiratory inductive plethysmography (RIP) was used to document nocturnal TAA in house dust mite (HDM)-sensitive Cynomolgus macaques.

View Article and Find Full Text PDF

Acute hypoxia dilates most systemic arteries leading to increased tissue perfusion. We have previously shown that at high-stimulus conditions, porcine coronary artery was relaxed by hypoxia without a change in intracellular [Ca(2+)] (27). This Ca(2+)-desensitizing hypoxic relaxation (CDHR) was validated in permeabilized porcine coronary artery smooth muscle (PCASM) in which hypoxia decreased force and myosin regulatory light chain phosphorylation (p-MRLC) despite fixed [Ca(2+)] (10).

View Article and Find Full Text PDF

N-acetylaspartate (NAA) is an intermediary metabolite that is found in relatively high concentrations in the human brain. More specifically, NAA is so concentrated in the neurons that it generates one of the most visible peaks in nuclear magnetic resonance (NMR) spectra, thus allowing NAA to serve as "a neuronal marker". However, to date there is no generally accepted physiological (primary) role for NAA.

View Article and Find Full Text PDF

Acute hypoxia dilates most systemic arteries leading to increased tissue perfusion. We showed that at high stimulus conditions, porcine coronary artery was relaxed by hypoxia without a change in [Ca(2+)](i). This 'Ca(2+)-desensitizing hypoxic relaxation' was validated in permeabilized porcine coronary artery smooth muscle (PCASM) in which hypoxia decreased force and myosin regulatory light chain phosphorylation (p-MRLC) despite fixed [Ca(2+)].

View Article and Find Full Text PDF

To demonstrate a Ca(2+)-independent component of hypoxic vasorelaxation and to investigate its mechanism, we utilized permeabilized porcine coronary arteries, in which [Ca(2+)] could be clamped. Arteries permeabilized with beta-escin developed maximum force in response to free Ca(2+) (6.6 microm), concomitant with a parallel increase in myosin regulatory light chain phosphorylation (MRLC-P(i)), from 0.

View Article and Find Full Text PDF

Serine 19 phosphorylation of the myosin regulatory light chain (MRLC) appears to be the primary determinant of smooth muscle force development. The relationship between MRLC phosphorylation and force is nonlinear, showing that phosphorylation is not a simple switch regulating the number of cycling cross bridges. We reexamined the MRLC phosphorylation-force relationship in slow, tonic swine carotid media; fast, phasic rabbit urinary bladder detrusor; and very fast, tonic rat anococcygeus.

View Article and Find Full Text PDF