Publications by authors named "Robert L Vold"

We conducted a detailed investigation of the dynamics of two phenylalanine side chains in the hydrophobic core of the villin headpiece subdomain protein (HP36) in the hydrated powder state over the 298-80 K temperature range. Our main tools were static deuteron NMR measurements of longitudinal relaxation and line shapes supplemented with computational modeling. The temperature dependence of the relaxation times reveals the presence of two main mechanisms that can be attributed to the ring-flips, dominating at high temperatures, and small-angle fluctuations, dominating at low temperatures.

View Article and Find Full Text PDF

We investigated site-specific dynamics of key methyl groups in the hydrophobic core of chicken villin headpiece subdomain (HP36) over the temperature range between 298 and 140 K using deuteron solid-state NMR longitudinal relaxation measurements. The relaxation of the longitudinal magnetization is weakly nonexponential (glassy) at high temperatures and exhibits a stronger degree of nonexponentiality below about 175 K. In addition, the characteristic relaxation times deviate from the simple Arrhenius law.

View Article and Find Full Text PDF

We have investigated microsecond to millisecond time scale dynamics in several key hydrophobic core methyl groups of chicken villin headpiece subdomain protein (HP36) using a combination of single-site labeling, deuteron solid-state NMR line shape analysis, and computational modeling. Deuteron line shapes of hydrated powder samples are dominated by rotameric jumps and show a large variability of rate constants, activation energies, and rotameric populations. Site-specific activation energies vary from 6 to 38 kJ/mol.

View Article and Find Full Text PDF

Quantitative dynamics of methyl groups in 9-fluorenylmethyloxycarbonyl-leucine (FMOC-leu) have been analyzed and compared with earlier studies of methyl dynamics in chicken villin headpiece subdomain protein (HP36) labeled at L69, a key hydrophobic core position. A combination of deuteron solid-state nuclear magnetic resonance experiments over the temperature range of 7-324 K and computational modeling indicated that while the two compounds show the same modes of motions, there are marked differences in the best-fit parameters of these motions. One of the main results is that the crossover observed in the dynamics of the methyl groups in the HP36 sample at 170 K is absent in FMOC-leu.

View Article and Find Full Text PDF

With the goal of investigating dynamical features of hydrophobic cores of proteins over a wide range of temperatures, the chicken villin headpiece subdomain protein (HP36) was labeled at a "single" site corresponding to any one of the two C(delta)D(3) groups of leucine-69, which is located in a key position of the core. The main techniques employed are deuteron NMR quadrupolar echo line shape analysis, and T(1Z) (Zeeman) and T(1Q) (quadrupolar order) relaxation experiments performed at 11.7 and 17.

View Article and Find Full Text PDF

The multiple-quantum magic-angle spinning (MQMAS) and satellite-transition magic-angle spinning (STMAS) experiments refocus second-order quadrupolar broadening of half-integer quadrupolar spins in the form of two-dimensional experiments. Isotropic shearing is usually applied along the indirect dimension of the 2D spectra such that an isotropic projection free of anisotropic quadrupolar broadening can be obtained. An alternative shear transformation by a factor equal to the coherence level (quantum number) selected during the evolution period is proposed.

View Article and Find Full Text PDF

The signal to noise ratio of solid state deuteron NMR line shapes can be significantly improved by recording multiple echoes, generated either by a quadrupole Carr-Purcell-Meiboom-Gill pulse train (QCPMG) or by magic angle spinning (MAS). It is shown in this article, theoretically and experimentally, that when these techniques are used to record partially relaxed spectra, the relaxation times of Zeeman order, T(1Z), and quadrupole order, T(1Q), measured for individual side bands in QCPMG experiments preserve relaxation time anisotropy, while rotational side bands in MAS spectra do not. The relaxation times of individual QCPMG sidebands are not identical to those measured at the same frequencies on partially relaxed quadrupole echo powder patterns, and must be computed by explicit simulation.

View Article and Find Full Text PDF

The molecular dynamics of [-SiDMe(2)] grafted on two amorphous silica materials, mesoporous SBA and non-porous Aerosil, was investigated by deuteron ((2)H) solid-state NMR spectroscopy. Quadrupole echo (QE), quadrupole Carr-Purcell-Meiboom-Gill (QCPMG) and magic angle spinning (MAS) spectra were recorded as a function of temperature. These were analyzed to determine the rates and trajectories of molecular motion of the surface species.

View Article and Find Full Text PDF

This paper describes EXPRESS (EXchange Program for RElaxing Spin Systems), a computer program that simulates the effects of Markovian jump dynamics for a wide variety of solid state nuclear magnetic resonance experiments. A graphical interface is described that facilitates the definition of rotational jumps around non-commuting axes that may occur at arbitrary, different rates. Solid state deuteron NMR is widely used to investigate such processes, and EXPRESS allows simulations of deuteron quadrupole echo and magic angle spinning line (MAS) shapes, as well as partially relaxed line shapes for measurements of anisotropic relaxation of Zeeman and quadrupolar order.

View Article and Find Full Text PDF

Spin-lattice relaxation rates of lead have been measured at 17.6 T (156.9 MHz) as a function of temperature in polycrystalline lead nitrate and lead molybdate.

View Article and Find Full Text PDF

The crystal structure of a triclinic 2:2 inclusion complex of beta-cyclodextrin with N-acetyl-L-phenylalanine methyl ester has been determined at several temperatures between 298 and 20 K to further study molecular recognition using solid-state supramolecular beta-cyclodextrin complexes. The study reveals kinetic energy dependent changes in guest molecule conformations, orientations, and positions in the binding pocket presented by the crystal lattice. Accompanying these changes are observable differences in guest-guest interactions and hydrogen-bonding interactions in the binding pocket that involve guest molecules, water of hydration molecules, and beta-cyclodextrin molecules.

View Article and Find Full Text PDF

The relatively new deuteron NMR method of off-axis-magic angle spinning (OMAS) has been extended and used to investigate multiaxis rotational jump motion. Floquet theory is developed for simulating deuteron OMAS spectra with multisite jumps at different rates about noncoincident axes, and efficient procedures are presented for computing the sideband line shapes. It is demonstrated experimentally that reproducible adjustment of the angle between the rotor axis and the static magnetic field is feasible with precision approaching +/- 0.

View Article and Find Full Text PDF

Solid state deuteron magic angle spinning nuclear magnetic resonance spectra of conductive ring-deuterated polyaniline consist of two peaks, one at the same chemical shift as the insulating form of the polymer and the second shifted by 5.8+/-1 ppm. The magnitude of the shift is field and temperature independent and is identified as a Knight shift.

View Article and Find Full Text PDF

Solid solutions of (1'-x)Pb(Mg(1/3)Nb(2/3))O3xPb(Sc(1/2)Nb(1/2))O3 (PMN/PSN) have been investigated using high-resolution 93Nb 3-quantum magic-angle spinning nuclear magnetic resonance experiments (3QMAS NMR). In previous MAS NMR investigations, the local B-cation ordering in these relaxor ferroelectric solid solutions was quantitatively determined. However, in conventional one-dimensional MAS spectra the effects of chemical shifts and quadrupole interaction are convoluted; this, in addition to the insufficient resolution, precludes reliable extraction of the values of isotropic chemical shift and quadrupole coupling product.

View Article and Find Full Text PDF