Publications by authors named "Robert L Strausberg"

Tryptophan degradation is an immune escape strategy shared by many tumors. However, cancer cells' compensatory mechanisms remain unclear. We demonstrate here that a shortage of tryptophan caused by expression of indoleamine 2,3-dioxygenase (IDO) and tryptophan 2,3-dioxygenase (TDO) resulted in ATF4-dependent upregulation of several amino acid transporters, including SLC1A5 and its truncated isoforms, which in turn enhanced tryptophan and glutamine uptake.

View Article and Find Full Text PDF

Detection of circulating tumor DNA (ctDNA) after resection of stage II colon cancer may identify patients at the highest risk of recurrence and help inform adjuvant treatment decisions. We used massively parallel sequencing-based assays to evaluate the ability of ctDNA to detect minimal residual disease in 1046 plasma samples from a prospective cohort of 230 patients with resected stage II colon cancer. In patients not treated with adjuvant chemotherapy, ctDNA was detected postoperatively in 14 of 178 (7.

View Article and Find Full Text PDF

Melanoma is one of the major cancer types for which new immune-based cancer treatments have achieved promising results. However, anti-PD-1 and anti-CTLA-4 therapies are effective only in some patients. Hence, predictive molecular markers for the development of clinical strategies targeting immune checkpoints are needed.

View Article and Find Full Text PDF

Background: APC mutations (APC-mt) occur in ∼70% of colorectal cancers (CRCs), but their relationship to prognosis is unclear.

Methods: APC prognostic value was evaluated in 746 stage I-IV CRC patients, stratifying for tumour location and microsatellite instability (MSI). Microarrays were used to identify a gene signature that could classify APC mutation status, and classifier ability to predict prognosis was examined in an independent cohort.

View Article and Find Full Text PDF

We carried out a mutational analysis of 3,594 genes coding for cell surface proteins (Surfaceome) in 23 colorectal cancer cell lines, searching for new altered pathways, druggable mutations and mutated epitopes for targeted therapy in colorectal cancer. A total of 3,944 somatic non-synonymous substitutions and 595 InDels, occurring in 2,061 (57%) Surfaceome genes were catalogued. We identified 48 genes not previously described as mutated in colorectal tumors in the TCGA database, including genes that are mutated and expressed in >10% of the cell lines (SEMA4C, FGFRL1, PKD1, FAM38A, WDR81, TMEM136, SLC36A1, SLC26A6, IGFLR1).

View Article and Find Full Text PDF

Meningiomas are the most common primary intracranial tumors. Surgical resection remains the treatment of choice for these tumors. However, a significant number of tumors are not surgically accessible, recur, or become malignant, necessitating the repetition of surgery and sometimes radiation.

View Article and Find Full Text PDF

Cancer-testis (CT) antigens are potential targets for cancer immunotherapy because of their restricted expression in immune-privileged germ cells and various malignancies. Current application of CT-based immunotherapy has been focused on CT expression-rich tumors such as melanoma and lung cancers. In this study, we surveyed CT expression using The Cancer Genome Atlas (TCGA) datasets for ten common cancer types.

View Article and Find Full Text PDF

Human colorectal cancer cell lines are used widely to investigate tumor biology, experimental therapy, and biomarkers. However, to what extent these established cell lines represent and maintain the genetic diversity of primary cancers is uncertain. In this study, we profiled 70 colorectal cancer cell lines for mutations and DNA copy number by whole-exome sequencing and SNP microarray analyses, respectively.

View Article and Find Full Text PDF

Purpose: PIK3CA and PTEN mutations are prevalent in colorectal cancer and potential markers of response to mitogen-activated protein/extracellular signal-regulated kinase inhibitors and anti-EGF receptor antibody therapy. Relationships between phosphoinositide 3-kinase (PI3K) pathway mutation, clinicopathologic characteristics, molecular features, and prognosis remain controversial.

Experimental Design: A total of 1,093 stage I-IV colorectal cancers were screened for PIK3CA (exons 9 and 20), KRAS (codons 12-13), BRAF (codon 600) mutations, and microsatellite instability (MSI).

View Article and Find Full Text PDF

Purpose: We aim to identify tumor-specific alternative splicing events having potential applications in the early detection, diagnosis, prognosis, and therapy for cancers.

Experimental Design: We analyzed RNA-seq data on 470 clear cell renal cell carcinomas (ccRCC) and 68 kidney tissues to identify tumor-specific alternative splicing events. We further focused on the fibroblast growth factor receptor 2 (FGFR2) isoform switch and characterized ccRCCs expressing different FGFR2 isoforms by integrated analyses using genomic data from multiple platforms and tumor types.

View Article and Find Full Text PDF

Activation of the canonical TGF-β signaling pathway provides growth inhibitory signals in the normal intestinal epithelium. Colorectal cancers (CRCs) frequently harbor somatic mutations in the pathway members TGFBR2 and SMAD4, but to what extent mutations in SMAD2 or SMAD3 contribute to tumorigenesis is unclear. A cohort of 744 primary CRCs and 36 CRC cell lines were sequenced for SMAD4, SMAD2, and SMAD3 and analyzed for allelic loss by single-nucleotide polymorphism (SNP) microarray analysis.

View Article and Find Full Text PDF

Starting from publicly-accessible datasets, we have utilized comparative and phylogenetic genome analyses to characterize the evolution of the human MAGE gene family. Our characterization of genomic structures in representative genomes of primates, rodents, carnivora, and macroscelidea indicates that both Type I and Type II MAGE genes have undergone lineage-specific evolution. The restricted expression pattern in germ cells of Type I MAGE orthologs is observed throughout evolutionary history.

View Article and Find Full Text PDF

While genetic mutation is a hallmark of cancer, many cancers also acquire epigenetic alterations during tumorigenesis including aberrant DNA hypermethylation of tumor suppressors, as well as changes in chromatin modifications as caused by genetic mutations of the chromatin-modifying machinery. However, the extent of epigenetic alterations in cancer cells has not been fully characterized. Here, we describe complete methylome maps at single nucleotide resolution of a low-passage breast cancer cell line and primary human mammary epithelial cells.

View Article and Find Full Text PDF

Although patterns of somatic alterations have been reported for tumor genomes, little is known on how they compare with alterations present in non-tumor genomes. A comparison of the two would be crucial to better characterize the genetic alterations driving tumorigenesis. We sequenced the genomes of a lymphoblastoid (HCC1954BL) and a breast tumor (HCC1954) cell line derived from the same patient and compared the somatic alterations present in both.

View Article and Find Full Text PDF

Purpose: Oncogene mutations contribute to colorectal cancer development. We searched for differences in oncogene mutation profiles between colorectal cancer metastases from different sites and evaluated these as markers for site of relapse.

Experimental Design: One hundred colorectal cancer metastases were screened for mutations in 19 oncogenes, and further 61 metastases and 87 matched primary cancers were analyzed for genes with identified mutations.

View Article and Find Full Text PDF

Background: To identify potential tumor suppressor genes, genome-wide data from exome and transcriptome sequencing were combined to search for genes with loss of heterozygosity and allele-specific expression. The analysis was conducted on the breast cancer cell line HCC1954, and a lymphoblast cell line from the same individual, HCC1954BL.

Results: By comparing exome sequences from the two cell lines, we identified loss of heterozygosity events at 403 genes in HCC1954 and at one gene in HCC1954BL.

View Article and Find Full Text PDF

Culex quinquefasciatus (the southern house mosquito) is an important mosquito vector of viruses such as West Nile virus and St. Louis encephalitis virus, as well as of nematodes that cause lymphatic filariasis. C.

View Article and Find Full Text PDF

Background: Cancer/testis (CT) genes are expressed only in the germ line and certain tumors and are most frequently located on the X-chromosome (the CT-X genes). Amongst the best studied CT-X genes are those encoding several MAGE protein families. The function of MAGE proteins is not well understood, but several have been shown to potentially influence the tumorigenic phenotype.

View Article and Find Full Text PDF

Voltage-gated Na(+) channels (VGSC) have been implicated in the metastatic potential of human breast, prostate, and lung cancer cells. Specifically, the SCN5A gene encoding the VGSC isotype Na(v)1.5 has been defined as a key driver of human cancer cell invasion.

View Article and Find Full Text PDF

As an obligatory parasite of humans, the body louse (Pediculus humanus humanus) is an important vector for human diseases, including epidemic typhus, relapsing fever, and trench fever. Here, we present genome sequences of the body louse and its primary bacterial endosymbiont Candidatus Riesia pediculicola. The body louse has the smallest known insect genome, spanning 108 Mb.

View Article and Find Full Text PDF

The human microbiome refers to the community of microorganisms, including prokaryotes, viruses, and microbial eukaryotes, that populate the human body. The National Institutes of Health launched an initiative that focuses on describing the diversity of microbial species that are associated with health and disease. The first phase of this initiative includes the sequencing of hundreds of microbial reference genomes, coupled to metagenomic sequencing from multiple body sites.

View Article and Find Full Text PDF

The freshwater cnidarian Hydra was first described in 1702 and has been the object of study for 300 years. Experimental studies of Hydra between 1736 and 1744 culminated in the discovery of asexual reproduction of an animal by budding, the first description of regeneration in an animal, and successful transplantation of tissue between animals. Today, Hydra is an important model for studies of axial patterning, stem cell biology and regeneration.

View Article and Find Full Text PDF

Objectives: We tested the hypothesis that co-coordinated up-regulation or down-regulation of several ovarian cell surface kinases may provide clues for better understanding of the disease and help in rational design of therapeutic targets.

Study Design: We compared the expression signature of 69 surface kinases in normal ovarian surface epithelial cells (OSE), with OSE from patients at high risk and with ovarian cancer.

Results: Seven surface kinases, ALK, EPHA5, EPHB1, ERBB4, INSRR, PTK, and TGFbetaR1 displayed a distinctive linear trend in expression from normal, highrisk, and malignant epithelium.

View Article and Find Full Text PDF

Background: Next generation sequencing (NGS) platforms are currently being utilized for targeted sequencing of candidate genes or genomic intervals to perform sequence-based association studies. To evaluate these platforms for this application, we analyzed human sequence generated by the Roche 454, Illumina GA, and the ABI SOLiD technologies for the same 260 kb in four individuals.

Results: Local sequence characteristics contribute to systematic variability in sequence coverage (>100-fold difference in per-base coverage), resulting in patterns for each NGS technology that are highly correlated between samples.

View Article and Find Full Text PDF

It is well established that epigenetic modulation of genome accessibility in chromatin occurs during biological processes. Here we describe a method based on restriction enzymes and next-generation sequencing for identifying accessible DNA elements using a small amount of starting material, and use it to examine myeloid differentiation of primary human CD34+ cells. The accessibility of several classes of cis-regulatory elements was a predictive marker of in vivo DNA binding by transcription factors, and was associated with distinct patterns of histone posttranslational modifications.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: