Theory and simulations are used to demonstrate implementation of a variational Bayes algorithm called "active inference" in interacting arrays of nanomagnetic elements. The algorithm requires stochastic elements, and a simplified model based on a magnetic artificial spin ice geometry is used to illustrate how nanomagnets can generate the required random dynamics. Examples of tracking and PID control are demonstrated and shown to be consistent with the original stochastic differential equation formulation of active inference.
View Article and Find Full Text PDFInterest in continuous psychophysical approaches as a means of collecting data quickly under natural conditions is growing. Such approaches require stimuli to be changed randomly on a continuous basis so that participants can not guess future stimulus states. Participants are generally tasked with responding continuously using a continuum of response options.
View Article and Find Full Text PDFDetermining the velocities of target objects as we navigate complex environments is made more difficult by the fact that our own motion adds systematic motion signals to the visual scene. The flow-parsing hypothesis asserts that the background motion is subtracted from visual scenes in such cases as a way for the visual system to determine target motions relative to the scene. Here, we address the question of why backgrounds are only subtracted in lab settings.
View Article and Find Full Text PDFWe demonstrate ground state tunability for a hybrid artificial spin ice composed of Fe nanomagnets which are subject to site-specific exchange-bias fields, applied in integer multiples of the lattice along one sublattice of the classic square artificial spin ice. By varying this period, three distinct magnetic textures are identified: a striped ferromagnetic phase; an antiferromagnetic phase attainable through an external field protocol alone; and an unconventional ground state with magnetically charged pairs embedded in an antiferromagnetic matrix. Monte Carlo simulations support the results of field protocols and demonstrate that the pinning tunes relaxation timescales and their critical behavior.
View Article and Find Full Text PDFArtificial Spin Ice (ASI), consisting of a two dimensional array of nanoscale magnetic elements, provides a fascinating opportunity to observe the physics of out-of-equilibrium systems. Initial studies concentrated on the static, frozen state, whilst more recent studies have accessed the out-of-equilibrium dynamic, fluctuating state. This opens up exciting possibilities such as the observation of systems exploring their energy landscape through monopole quasiparticle creation, potentially leading to ASI magnetricity, and to directly observe unconventional phase transitions.
View Article and Find Full Text PDFArtificial spin ices are a class of metamaterials consisting of magnetostatically coupled nanomagnets. Their interactions give rise to emergent behavior, which has the potential to be harnessed for the creation of functional materials. Consequently, the ability to map the stray field of such systems can be decisive for gaining an understanding of their properties.
View Article and Find Full Text PDFFor over ten years, arrays of interacting single-domain nanomagnets, referred to as artificial spin ices, have been engineered with the aim to study frustration in model spin systems. Here, we use Fresnel imaging to study the reversal process in "pinwheel" artificial spin ice, a modified square ASI structure obtained by rotating each island by some angle about its midpoint. Our results demonstrate that a simple 45° rotation changes the magnetic ordering from antiferromagnetic to ferromagnetic, creating a superferromagnet which exhibits mesoscopic domain growth mediated by domain wall nucleation and coherent domain propagation.
View Article and Find Full Text PDFAs first demonstrated by Tang and Cohen in chiral optics, the asymmetry in the rate of electromagnetic energy absorption between left and right enantiomers is determined by an optical chirality density. Here, we demonstrate that this effect can exist in magnetic spin systems. By constructing a formal analogy with electrodynamics, we show that in antiferromagnets with broken chiral symmetry, the asymmetry in local spin-wave energy absorption is proportional to a spin-wave chirality density, which is a direct counterpart of optical zilch.
View Article and Find Full Text PDFModern nanofabrication techniques have opened the possibility to create novel functional materials, whose properties transcend those of their constituent elements. In particular, tuning the magnetostatic interactions in geometrically frustrated arrangements of nanoelements called artificial spin ice can lead to specific collective behaviour, including emergent magnetic monopoles, charge screening and transport, as well as magnonic response. Here, we demonstrate a spin-ice-based active material in which energy is converted into unidirectional dynamics.
View Article and Find Full Text PDFThe Dzyaloshinskii-Moriya interaction in ultrathin ferromagnets can result in nonreciprocal propagation of spin waves. We examine theoretically how spin wave power flow is influenced by this interaction. We show that the combination of the dipole-dipole and Dzyaloshinskii-Moriya interactions can result in unidirectional caustic beams in the Damon-Eshbach geometry.
View Article and Find Full Text PDFMagnetic skyrmions have the potential to provide solutions for low-power, high-density data storage and processing. One of the major challenges in developing skyrmion-based devices is the skyrmions' magnetic stability in confined helimagnetic nanostructures. Through a systematic study of equilibrium states, using a full three-dimensional micromagnetic model including demagnetisation effects, we demonstrate that skyrmionic textures are the lowest energy states in helimagnetic thin film nanostructures at zero external magnetic field and in absence of magnetocrystalline anisotropy.
View Article and Find Full Text PDFSpatially resolved analysis of magnetic properties on the nanoscale remains challenging, yet strain and defects on this length-scale can profoundly affect a material's bulk performance. We present a detailed investigation of the magnetic properties of La0.67Sr0.
View Article and Find Full Text PDFThe channeling of spin waves with domain walls in ultrathin ferromagnetic films is demonstrated theoretically and through micromagnetics simulations. It is shown that propagating excitations localized to the wall, which appear in the frequency gap of bulk spin wave modes, can be guided in curved geometries and propagate in close proximity to other channels. For Néel-type walls arising from a Dzyaloshinskii-Moriya interaction, the channeling is strongly nonreciprocal and group velocities can exceed 1 km/s in the long wavelength limit for certain propagation directions.
View Article and Find Full Text PDFWe show that an electron moving in a uniform magnetic field possesses a time-varying "diamagnetic" angular momentum. Surprisingly this means that the kinetic angular momentum of the electron may vary with time, despite the rotational symmetry of the system. This apparent violation of angular momentum conservation is resolved by including the angular momentum of the surrounding fields.
View Article and Find Full Text PDFJ Phys Condens Matter
October 2012
We present a theoretical discussion of surface polaritons on a ferroelectric-antiferromagnet with magnetoelectric coupling which allows the magnetic subsystem to be canted. Canting of the antiferromagnet results in weak ferromagnetism. The surface polaritons for a semi-infinite film are calculated for a propagation parallel to the uniaxial easy axis, leading to mixed modes.
View Article and Find Full Text PDFExchange bias is commonly manifested as the hysteresis-loop shift observed when a ferromagnet is in contact with an antiferromagnet. Here, we report observations of exchange bias with unusual features of a ferromagnet in contact with a spin glass, demonstrating that this is a phenomenon of greater generality. The easily measured properties of the ferromagnet allow access to the internal magnetic degrees of freedom of the glass to which they are coupled.
View Article and Find Full Text PDFSlightly modified versions of an early Hebbian/anti-Hebbian neural network are shown to be capable of extracting the sparse, independent linear components of a prefiltered natural image set. An explanation for this capability in terms of a coupling between two hypothetical networks is presented. The simple networks presented here provide alternative, biologically plausible mechanisms for sparse, factorial coding in early primate vision.
View Article and Find Full Text PDF