Publications by authors named "Robert L Robinson"

The pharmacologic management of heart failure with preserved ejection fraction (HFpEF) involves far fewer options with demonstrated additional benefit. Therefore, we examined the effect of combination of multiple classes of HF medication in the 30-day hospital readmission in patients with HFpEF. All adult patients discharged with a diagnosis of HFpEF and a left ventricular ejection fraction (LVEF) of ≥ 50% reported during the admission or within the previous six months from our institution were retrospectively studied for a 30-day hospital readmission risk.

View Article and Find Full Text PDF

Background: The last decade has brought significant changes to internal medicine clerkships through resident work-hour restrictions and the widespread adoption of hospitalists as medical educators. These key medical educators face competing demands for quality teaching and clinical service intensity.

Objective: The study reported here was conducted to explore the relationship between clinical service intensity and teaching evaluations of hospitalists by internal medicine clerkship students.

View Article and Find Full Text PDF

The value of tablet computer use in education is an area of considerable interest. Preliminary investigations shows that medical students feel that tablet computers were a positive addition to the preclinical curriculum. To better understand how and why medical students use tablet computers, we conducted an online survey of medical students in the United States This study shows frequent tablet computer use by medical students.

View Article and Find Full Text PDF

Periodic clinical productivity feedback with peer comparison produces significant changes to CPT code distributions, which leads to improvements in per-encounter work relative value units (wRVUs) (+25%) and charges (+20%). Improved wRVU production and charges can lead to increased collections, thus improving a practice's financial outlook without increasing patient volume. These interventions have minimal cost or risk to a hospitalist practice.

View Article and Find Full Text PDF

Traditional drug design is a laborious and expensive process that often challenges the pharmaceutical industries. As a result, researchers have turned to computational methods for computer-assisted molecular design. Recently, genetic and evolutionary algorithms have emerged as efficient methods in solving combinatorial problems associated with computer-aided molecular design.

View Article and Find Full Text PDF

One promising way to breach the skin's natural barrier to drugs is by the application of chemicals called penetration enhancers. However, identifying potential enhancers is difficult and time consuming. We have developed a virtual screening algorithm for generating potential chemical penetration enhancers (CPEs) by integrating nonlinear, theory-based quantitative structure-property relationship models, genetic algorithms, and neural networks.

View Article and Find Full Text PDF

The permeation coefficient characterizes the ability of a chemical to penetrate the dermis, and the current study describes our efforts to develop structure-based models for the permeation coefficient. Specifically, we have integrated nonlinear, quantitative structure-property relationship (QSPR) models, genetic algorithms (GAs), and neural networks to develop a reliable model. Case studies were conducted to investigate the effects of structural attributes on permeation using a carefully characterized database.

View Article and Find Full Text PDF

A quantitative structure-property relationship (QSPR) model for predicting the skin sensitization effects of chemical compounds has been developed. An extensive database of test results from three exclusive test procedures was used for QSPR model development. Since the experimental procedure and end-point ranking of data for local lymph node assay (LLNA), guinea pig maximization test (GPMT), and Federal Institute for Health Protection of Consumers and Veterinary Medicine (BgVV) are different, three separate QSPR models were developed.

View Article and Find Full Text PDF

Interest in developing procedures for estimating skin irritation potential of chemicals has been increasing as a result of concerns regarding animal welfare and costs involved in experimental irritation studies. In response to these concerns, a number of expert systems and quantitative structure-activity relationship (QSAR) models have been proposed for predicting the skin irritation potential of compounds. However, these models require as input independent estimates of several physiochemical properties.

View Article and Find Full Text PDF

Purpose: A novel technique is presented for identifying potential chemical penetration enhancers (CPEs) based on changes in the electrical resistance of skin.

Methods: Specifically, a multi-well resistance chamber was designed and constructed to facilitate more rapid determination of the effect of CPEs on skin resistance. The experimental setup was validated using nicotine and decanol on porcine skin in vitro.

View Article and Find Full Text PDF

The simplified local-density (SLD) theory was investigated regarding its ability to provide accurate representations and predictions of high-pressure supercritical adsorption isotherms encountered in coalbed methane (CBM) recovery and CO2 sequestration. Attention was focused on the ability of the SLD theory to predict mixed-gas adsorption solely on the basis of information from pure gas isotherms using a modified Peng-Robinson (PR) equation of state (EOS). An extensive set of high-pressure adsorption measurements was used in this evaluation.

View Article and Find Full Text PDF