The enzyme tyramine β-monooxygenase (TβM) belongs to a small eukaryotic family of physiologically important mononuclear dicopper monooxygenases. The properties of this family include noncoupled mononuclear copper centers ~11 Å apart, with Cu(M) performing C-H and O(2) activation and Cu(H) functioning as an electron storage site [Klinman, J. P.
View Article and Find Full Text PDFTyramine β-monooxygenase (TβM), the insect homologue of dopamine β-monooxygenase, is a neuroregulatory enzyme that catalyzes the β-hydroxylation of tyramine to yield octopamine. Mutation of the methionine (Met) ligand to Cu(M) of TβM, Met471Cys, yielded a form of TβM that is catalytically active but susceptible to inactivation during turnover [Hess, C. R.
View Article and Find Full Text PDFDehaloperoxidase (DHP) from Amphitrite ornata is a heme protein that can function both as a hemoglobin and as a peroxidase. This report describes the use of 77 K cryoreduction EPR/ENDOR techniques to study both functions of DHP. Cryoreduced oxyferrous [Fe(II)-O(2)] DHP exhibits two EPR signals characteristic of a peroxoferric [Fe(III)-O(2)(2-)] heme species, reflecting the presence of conformational substates in the oxyferrous precursor.
View Article and Find Full Text PDFThe enzymatic globin, dehaloperoxidase (DHP), from the terebellid polychaete Amphitrite ornata is designed to catalyze the oxidative dehalogenation of halophenol substrates. In this study, the ability of DHP to catalyze this reaction by a mechanism involving two consecutive one-electron steps via the normal order of addition of the oxidant cosubstrate (H(2)O(2)) before organic substrate [2,4,6-trichlorophenol (TCP)] is demonstrated. Specifically, 1 equiv of H(2)O(2) will fully convert 1 equiv of TCP to 2,6-dichloro-1,4-benzoquinone, implicating the role of multiple ferryl [Fe(IV)O] species.
View Article and Find Full Text PDFTo evaluate the potential of using heme-containing lipocalin nitrophorin 1 (NP1) as a template for protein engineering, we have replaced the native axial heme-coordinating histidine residue with glycine, alanine, and cysteine. We report here the characterization of the cysteine mutant H60C_NP1 by spectroscopic and crystallographic methods. The UV/vis, resonance Raman, and magnetic circular dichroism spectra suggest weak thiolate coordination of the ferric heme in the H60C_NP1 mutant.
View Article and Find Full Text PDFThe nature of the [Fe(IV)-O] center in hemoprotein Compounds II has recently received considerable attention, as several experimental and theoretical investigations have suggested that this group is not necessarily the traditionally assumed ferryl ion, [Fe(IV)=O]2+, but can be the protonated ferryl, [Fe(IV)-OH]3+. We show here that cryoreduction of the EPR-silent Compound II by gamma-irradiation at 77 K produces Fe(III) species retaining the structure of the precursor [Fe(IV)=O]2+ or [Fe(IV)-OH]3+, and that the properties of the cryogenerated species provide a report on structural features and the protonation state of the parent Compound II when studied by EPR and 1H and 14N ENDOR spectroscopies. To give the broadest view of the properties of Compounds II we have carried out such measurements on cryoreduced Compounds II of HRP, Mb, DHP and CPO and on CCP Compound ES.
View Article and Find Full Text PDFUltrafast laser spectroscopy techniques are used to measure the low-frequency vibrational coherence spectra and nitric oxide rebinding kinetics of Caldariomyces fumago chloroperoxidase (CPO). Comparisons of the CPO coherence spectra with those of other heme species are made to gauge the protein-specific nature of the low-frequency spectra. The coherence spectrum of native CPO is dominated by a mode that appears near 32-33 cm(-1) at all excitation wavelengths, with a phase that is consistent with a ground-state Raman-excited vibrational wavepacket.
View Article and Find Full Text PDFWe have employed rapid scan stopped-flow spectroscopy to examine whether the mechanism of oxidative dehalogenation catalyzed by C. fumago chloroperoxidase (CCPO) involves two consecutive one-electron steps or a single two-electron oxidation. First, we optimized the formation of CCPO compound I (CCPO-I) [Fe(IV)=O/porphyrin radical] and CCPO compound II (CCPO-II) [Fe(IV)=O] for use in double mixing rapid scan stopped-flow experiments.
View Article and Find Full Text PDFThe heme-containing respiratory protein, myoglobin (Mb), best known for oxygen storage, can exhibit peroxidase-like activity under conditions of oxidative stress. Under such circumstances, the initially formed ferric state can react with H2O2 (or other peroxides) to generate a long-lived ferryl [Fe(IV)=O] Compound II (Cpd II) heme intermediate that is capable of oxidizing a variety of biomolecules. In this study, the ability of Mb Cpd II to catalyze the oxidation of carcinogenic halophenols is demonstrated.
View Article and Find Full Text PDFAmphitrite ornata dehaloperoxidase (DHP) and Notomastus lobatus chloroperoxidase (NCPO) catalyze the peroxide-dependent dehalogenation of halophenols and halogenation of phenols, respectively. Both enzymes have histidine (His) as their proximal heme iron ligand. Crystallographic examination of DHP revealed that it has a globin fold [M.
View Article and Find Full Text PDFWe have examined the H2O2-dependent oxidative dehalogenation of 2,4,6-trihalophenols and p-halophenols catalyzed by Caldariomyces fumago chloroperoxidase (CCPO). CCPO is significantly more robust than other peroxidases and can function under harsher reaction conditions, and so its ability to dehalogenate halophenols could lead to its use as a bioremediation catalyst for aromatic dehalogenation reactions. Optimal catalysis occurred under acidic conditions (100 mM potassium phosphate solution, pH 3.
View Article and Find Full Text PDFBiochem Biophys Res Commun
November 2004
Dehaloperoxidase (DHP) from Amphitrite ornata is the only heme-containing, hydrogen peroxide-dependent globin capable of oxidatively dehalogenating halophenols to yield the corresponding quinones. To ascertain that this enzymatic activity is intrinsic to DHP, we have cloned and expressed the enzyme in Escherichia coli. We also find that an alternate oxygen atom donor, meta-chloroperbenzoic acid, gives appreciably higher activity than hydrogen peroxide.
View Article and Find Full Text PDF