Publications by authors named "Robert L Metzenberg"

Bimolecular fluorescence complementation (BiFC) is based on the complementation between two nonfluorescent fragments of the yellow fluorescent protein (YFP) when they are united by interactions between proteins covalently linked to them. We have successfully applied BiFC in Neurospora crassa using two genes involved in meiotic silencing by unpaired DNA (MSUD) and observed macromolecular complex formation involving only SAD-1 proteins, only SAD-2 proteins, and mixtures of SAD-1 and SAD-2 proteins.

View Article and Find Full Text PDF

In Neurospora, a gene present in an abnormal number of copies is usually a red flag for mischief. One way to deal with these potential intruders is by destroying their transcripts. Widely known as RNA interference (RNAi), this mechanism depends on the "dicing" of a double-stranded RNA intermediate into small-interfering RNA, which in turn guide the degradation of mRNA from the target gene.

View Article and Find Full Text PDF

In Neurospora crassa, pairing of homologous DNA segments is monitored during meiotic prophase I. Any genes not paired with a homolog, as well as any paired homologs of that gene, are silenced during the sexual phase by a mechanism known as meiotic silencing by unpaired DNA (MSUD). Two genes required for MSUD have been described previously: sad-1 (suppressor of ascus dominance), encoding an RNA-directed RNA polymerase, and sad-2, encoding a protein that controls the perinuclear localization of SAD-1.

View Article and Find Full Text PDF

We describe a process for covalently linking proteins to glass microscope slides and microbeads in a manner that optimizes the reactivity of the immobilized proteins and that is suitable for high-throughput microarray and flow cytometry analysis. The method involves the diazo coupling of proteins onto activated self-assembled monolayers formed from p-aminophenyl trimethoxysilane. Proteins immobilized by this method maintained bioactivity and produced enhanced levels of protein-protein interaction, low background fluorescence, and high selectivity.

View Article and Find Full Text PDF

A gene unpaired during the meiotic homolog pairing stage in Neurospora generates a sequence-specific signal that silences the expression of all copies of that gene. This process is called Meiotic Silencing by Unpaired DNA (MSUD). Previously, we have shown that SAD-1, an RNA-directed RNA polymerase (RdRP), is required for MSUD.

View Article and Find Full Text PDF

Neurospora crassa is a central organism in the history of twentieth-century genetics, biochemistry and molecular biology. Here, we report a high-quality draft sequence of the N. crassa genome.

View Article and Find Full Text PDF

A putative pheromone precursor gene of Neurospora crassa, mfa-1 (which encodes mating factor a-1), was identified as the most abundant clone in starved mycelial and perithecial cDNA libraries. Northern analysis demonstrated high mfa-1 expression in all mating type a tissues and suggested low expression levels in mat A tissues. The mfa-1 gene was expressed as an approximately 1.

View Article and Find Full Text PDF

In Neurospora, a gene not paired with a homolog in prophase I of meiosis generates a signal that transiently silences all sequences homologous to it by a process called meiotic silencing by unpaired DNA (MSUD). Thus a deletion mutation in a heterozygous cross is formally "ascus-dominant" because its unpaired wild-type partner silences itself. We describe in detail the isolation of a mutation, Sad-1(UV), that suppresses the dominance of various ascus-dominant mutations.

View Article and Find Full Text PDF