A unifying identity is derived relating the reversible work of cluster formation (W) and its molecular number content (n) and surface work (Φ) components, each ratioed to the corresponding values for a spherical capillary drop of critical size in classical nucleation theory. The result is a relationship that connects these ratios: = -2 + 3, where = W/W, = n/n, and = Φ/Φ. Shown to generalize two early thermodynamic relationships of Gibbs, the new result is demonstrated here for Fletcher's model of heterogeneous nucleation, resulting in a unified treatment of condensation on flat and curved substrates and smooth passage to the homogeneous limit.
View Article and Find Full Text PDFA re-examination of measurements of heterogeneous nucleation of water vapor on silver nanoparticles is presented here using a model-free framework that derives the energy of critical cluster formation directly from measurements of nucleation probability. Temperature dependence is correlated with cluster stabilization by the nanoparticle seed and previously found cases of unusual increasing nucleation onset saturation ratio with increasing temperature are explained. A necessary condition for the unusual positive temperature dependence is identified, namely that the critical cluster be more stable, on a per molecule basis, than the bulk liquid to exhibit the effect.
View Article and Find Full Text PDFThe behavior of NaCl nanoparticles as a function of relative humidity (RH) has been characterized using non-contact environmental atomic force microscopy (e-AFM) to measure the heights of particles deposited on a prepared hydrophobic surface. Cubic NaCl nanoparticles with sides of 35 and 80 nm were found to take up water reversibly with increasing RH well below the bulk deliquescence relative humidity (DRH) of 75% at 23(∘)C, and to form a liquid-like surface layer of thickness 2 to 5 nm, with measurable uptake (>2 nm increase in particle height) beginning at 70% RH. The maximum thickness of the layer increased with increasing RH and increasing particle size over the range studied.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 2009
The molecular processes leading to formation of nanoparticles of blue haze over forested areas are highly complex and not fully understood. We show that the interaction between biogenic organic acids and sulfuric acid enhances nucleation and initial growth of those nanoparticles. With one cis-pinonic acid and three to five sulfuric acid molecules in the critical nucleus, the hydrophobic organic acid part enhances the stability and growth on the hydrophilic sulfuric acid counterpart.
View Article and Find Full Text PDF