Publications by authors named "Robert L Last"

Mitigating the effects of climate stress on crops is important for global food security. The microbiome associated with plant roots, the rhizobiome, can harbor beneficial microbes that alleviate stress, but the factors influencing their recruitment are unclear. We conducted a greenhouse experiment using field soil with a legacy of growing switchgrass and common bean to investigate the impact of short-term drought severity on the recruitment of active bacterial rhizobiome members.

View Article and Find Full Text PDF

Enhancing the efficiency of photosynthesis represents a promising strategy to improve crop yields, with keeping the steady state of PSII being key to determining the photosynthetic performance. However, the mechanisms whereby the stability of PSII is maintained in oxygenic organisms remain to be explored. Here, we report that the Psb28 protein functions in regulating the homeostasis of PSII under different light conditions in Arabidopsis thaliana.

View Article and Find Full Text PDF

Solanaceae (nightshade family) species synthesize a remarkable array of clade- and tissue-specific specialized metabolites. Protective acylsugars, one such class of structurally diverse metabolites, are produced by ACYLSUGAR ACYLTRANSFERASE (ASAT) enzymes from sugars and acyl-coenzyme A esters. Published research has revealed trichome acylsugars composed of glucose and sucrose cores in species across the family.

View Article and Find Full Text PDF

Tremendous plant metabolic diversity arises from phylogenetically restricted specialized metabolic pathways. Specialized metabolites are synthesized in dedicated cells or tissues, with pathway genes sometimes colocalizing in biosynthetic gene clusters (BGCs). However, the mechanisms by which spatial expression patterns arise and the role of BGCs in pathway evolution remain underappreciated.

View Article and Find Full Text PDF

Plant derived bioactive small molecules have attracted attention of scientists across fundamental and applied scientific disciplines. We seek to understand the influence of these phytochemicals on rhizosphere and root-associated fungi. We hypothesize that - consistent with accumulating evidence that switchgrass genotype impacts microbiome assembly - differential terpenoid accumulation contributes to switchgrass ecotype-specific microbiome composition.

View Article and Find Full Text PDF

Solanaceae (nightshade family) species synthesize a remarkable array of clade- and tissue-specific specialized metabolites. Protective acylsugars, one such class of structurally diverse metabolites, are produced by AcylSugar AcylTransferases from sugars and acyl-coenzyme A esters. Published research revealed trichome acylsugars composed of glucose and sucrose cores in species across the family.

View Article and Find Full Text PDF

Correction for 'Fruity, sticky, stinky, spicy, bitter, addictive, and deadly: evolutionary signatures of metabolic complexity in the Solanaceae' by Paul D. Fiesel , , 2022, , 1438-1464, https://doi.org/10.

View Article and Find Full Text PDF

Switchgrass (Panicum virgatum) is a bioenergy model crop valued for its energy efficiency and drought tolerance. The related monocot species rice (Oryza sativa) and maize (Zea mays) deploy species-specific, specialized metabolites as core stress defenses. By contrast, specialized chemical defenses in switchgrass are largely unknown.

View Article and Find Full Text PDF

Plants make a variety of specialized metabolites that can mediate interactions with animals, microbes, and competitor plants. Understanding how plants synthesize these compounds enables studies of their biological roles by manipulating their synthesis in vivo as well as producing them in vitro. Acylsugars are a group of protective metabolites that accumulate in the trichomes of many Solanaceae family plants.

View Article and Find Full Text PDF

Switchgrass ( L.) is a bioenergy crop that grows productively on lands not suitable for food production and is an excellent target for low-pesticide input biomass production. We hypothesize that resistance to insect pests and microbial pathogens is influenced by low-molecular-weight compounds known as specialized metabolites.

View Article and Find Full Text PDF

Acylsugars are defensive, trichome-synthesized sugar esters produced in plants across the Solanaceae (nightshade) family. Although assembled from simple metabolites and synthesized by a relatively short core biosynthetic pathway, tremendous within- and across-species acylsugar structural variation is documented across the family. To advance our understanding of the diversity and the synthesis of acylsugars within the Nicotiana genus, trichome extracts were profiled across the genus coupled with transcriptomics-guided enzyme discovery and in vivo and in vitro analysis.

View Article and Find Full Text PDF

Covering: 2000-2022Plants collectively synthesize a huge repertoire of metabolites. General metabolites, also referred to as primary metabolites, are conserved across the plant kingdom and are required for processes essential to growth and development. These include amino acids, sugars, lipids, and organic acids.

View Article and Find Full Text PDF

Collectively, plants produce hundreds of thousands of specialized metabolites from simple building blocks such as amino acids, fatty acids, and isoprenoids. As additional specialized metabolic enzymes are described, there is increasing recognition of the importance of cooption of general metabolic enzymes to specialized metabolism by gene duplication, narrowing of expression, and alteration of enzymatic activities. Here, we examine how several classes of enzymes were each coopted multiple times.

View Article and Find Full Text PDF

Plants synthesize myriad phylogenetically restricted specialized (aka “secondary”) metabolites with diverse structures. Metabolism of acylated sugar esters in epidermal glandular secreting trichomes across the Solanaceae (nightshade) family is ideal for investigating the mechanisms of evolutionary metabolic diversification. We developed methods to structurally analyze acylhexose mixtures by 2D NMR, which led to the insight that the Old World species black nightshade () accumulates acylglucoses and acylinositols in the same tissue.

View Article and Find Full Text PDF

Evolutionary dynamics at the population level play a central role in creating the diversity of life on our planet. In this study, we sought to understand the origins of such population-level variation in mating systems and defensive acylsugar chemistry in Solanum habrochaites-a wild tomato species found in diverse Andean habitats in Ecuador and Peru. Using Restriction-site-Associated-DNA-Sequencing (RAD-seq) of 50 S.

View Article and Find Full Text PDF
Article Synopsis
  • Salicylic acid (SA) is important for plant defense, stress responses, and growth, but its breakdown process is not fully understood.
  • This study identifies SlSA1H, a tomato enzyme that converts SA to catechol, and shows that its activity is highest in stems, affecting the levels of other derivative compounds.
  • SlSA1H suppression leads to decreased guaiacol and no veratrole production, and the research also examines related enzymes and their evolutionary development within the Solanaceae family.
View Article and Find Full Text PDF

Acylsugars constitute an abundant class of pest- and pathogen-protective Solanaceae family plant-specialized metabolites produced in secretory glandular trichomes. produces copious triacylated sucrose and glucose esters, and the core biosynthetic pathway producing these compounds was previously characterized. We performed untargeted metabolomic analysis of surface metabolites from accessions spanning the species range, which indicated geographic trends in the acylsugar profile and revealed two compound classes previously undescribed from this species, tetraacylglucoses and flavonoid aglycones.

View Article and Find Full Text PDF

Natural pyrethrin insecticides produced by Dalmatian pyrethrum (Tanacetum cinerariifolium) have low mammalian toxicity and short environmental persistence, providing an alternative to widely used synthetic agricultural insecticides that pose a threat to human health and the environment. A recent surge of interest in the use of pyrethrins as agricultural insecticides coincides with the discovery of several new genes in the pyrethrin biosynthetic pathway. Elucidation of this pathway facilitates efforts to breed improved pyrethrum varieties and to engineer plants with improved endogenous defenses or hosts for heterologous pyrethrin production.

View Article and Find Full Text PDF

Plants produce phylogenetically and spatially restricted, as well as structurally diverse specialized metabolites via multistep metabolic pathways. Hallmarks of specialized metabolic evolution include enzymatic promiscuity and recruitment of primary metabolic enzymes and examples of genomic clustering of pathway genes. Solanaceae glandular trichomes produce defensive acylsugars, with sidechains that vary in length across the family.

View Article and Find Full Text PDF

Given the potential health benefits (and adverse effects), of polyphenolic and steroidal glycoalkaloids in the diet there is a growing interest in fully elucidating the genetic control of their levels in foodstuffs. Here we carried out profiling of the specialized metabolites in the seeds of the Solanum pennellii introgression lines identifying 338 putative metabolite quantitative trait loci (mQTL) for flavonoids, steroidal glycoalkaloids and further specialized metabolites. Two putative mQTL for flavonols and one for steroidal glycoalkaloids were cross-validated by evaluation of the metabolite content of recombinants harboring smaller introgression in the corresponding QTL interval or by analysis of lines from an independently derived backcross inbred line population.

View Article and Find Full Text PDF

flowers synthesize six pyrethrins that function as effective insecticides. -Chrysanthemol is an early intermediate in the synthesis of the monoterpene moiety of pyrethrins. Previously, the pyrethrum enzyme chrysanthemyl diphosphate synthase (TcCDS) was shown to catalyze the formation of the prenyl diphosphate compound chrysanthemyl diphosphate (CPP) by condensing two molecules of dimethylallyl diphosphate (DMAPP).

View Article and Find Full Text PDF

Plants make many biologically active, specialized metabolites, which vary in structure, biosynthesis, and the processes they influence. An increasing number of these compounds are documented to protect plants from insects, pathogens, or herbivores or to mediate interactions with beneficial organisms, including pollinators and nitrogen-fixing microbes. Acylsugars, one class of protective compounds, are made in glandular trichomes of plants across the Solanaceae family.

View Article and Find Full Text PDF

The target of rapamycin (TOR) kinase is an evolutionarily conserved hub of nutrient sensing and metabolic signaling. In plants, a functional connection of TOR activation with glucose availability was demonstrated, while it is yet unclear whether branched-chain amino acids (BCAAs) are a primary input of TOR signaling as they are in yeast and mammalian cells. Here, we report on the characterization of an Arabidopsis mutant over-accumulating BCAAs.

View Article and Find Full Text PDF

Specialized metabolites are structurally diverse and cell- or tissue-specific molecules produced in restricted plant lineages. In contrast, primary metabolic pathways are highly conserved in plants and produce metabolites essential for all of life, such as amino acids and nucleotides. Substrate promiscuity - the capacity to accept non-native substrates - is a common characteristic of enzymes, and its impact is especially apparent in generating specialized metabolite variation.

View Article and Find Full Text PDF

The plant pyrethrum () synthesizes highly effective natural pesticides known as pyrethrins. Pyrethrins are esters consisting of an irregular monoterpenoid acid and an alcohol derived from jasmonic acid (JA). These alcohols, referred to as rethrolones, can be jasmolone, pyrethrolone, or cinerolone.

View Article and Find Full Text PDF