NPJ Biofilms Microbiomes
January 2025
Gut bacterial metabolism of dietary flavonoids results in the production of a variety of phenolic acids, whose contributions to health remain poorly understood. Here, we show that supplementation with the commonly consumed flavonoid quercetin impacted gut microbiome composition and resulted in a significant reduction in atherosclerosis burden in conventionally raised (ConvR) Apolipoprotein E (ApoE) knockout (KO) mice but not in germ-free (GF) ApoE KO mice. Metabolomic analysis revealed that consumption of quercetin significantly increased plasma levels of benzoylglutamic acid, 3,4 dihydroxybenzoic acid (3,4-DHBA) and its sulfate-conjugated form in ConvR mice, but not in GF mice supplemented with the flavonoid.
View Article and Find Full Text PDFDespite the fundamental role of bacterial strain variation in gut microbiota function, the number of unique strains of a species that can stably colonize the human intestine is still unknown for almost all species. Here we determine the strain richness (SR) of common gut species using thousands of sequenced bacterial isolates with paired metagenomes. We show that SR varies across species, is transferable by faecal microbiota transplantation, and is uniquely low in the gut compared with soil and lake environments.
View Article and Find Full Text PDFAge-related disease may be mediated by low levels of chronic inflammation ("inflammaging"). Recent work suggests that gut microbes can contribute to inflammation via degradation of the intestinal barrier. While aging and age-related diseases including Alzheimer's disease (AD) are linked to altered microbiome composition and higher levels of gut microbial components in systemic circulation, the role of intestinal inflammation remains unclear.
View Article and Find Full Text PDFThe microbes and microbial pathways that influence host inflammatory disease progression remain largely undefined. Here, we show that variation in atherosclerosis burden is partially driven by gut microbiota and is associated with circulating levels of uric acid (UA) in mice and humans. We identify gut bacterial taxa spanning multiple phyla, including Bacillota, Fusobacteriota, and Pseudomonadota, that use multiple purines, including UA as carbon and energy sources anaerobically.
View Article and Find Full Text PDFThe molecular bases of how host genetic variation impacts the gut microbiome remain largely unknown. Here we used a genetically diverse mouse population and applied systems genetics strategies to identify interactions between host and microbe phenotypes including microbial functions, using faecal metagenomics, small intestinal transcripts and caecal lipids that influence microbe-host dynamics. Quantitative trait locus (QTL) mapping identified murine genomic regions associated with variations in bacterial taxa; bacterial functions including motility, sporulation and lipopolysaccharide production and levels of bacterial- and host-derived lipids.
View Article and Find Full Text PDFGut bacterial metabolism of dietary flavonoids results in the production of a variety of phenolic acids, whose contributions to health remain poorly understood. Here, we show that supplementation with the commonly consumed flavonoid quercetin impacted gut microbiome composition and resulted in a significant reduction in atherosclerosis burden in conventionally-raised (ConvR) () knockout (KO) mice fed a high-MAC (microbiota-accessible carbohydrates) diet. However, this effect was not observed in animals consuming a defined diet containing low levels of MAC.
View Article and Find Full Text PDFElderberries are good sources of anthocyanins, which are poorly absorbed in the upper gastrointestinal tract but extensively transformed into phenolic metabolites at the colonic level. Because different gut microbiota strains have different metabolism, the catabolism of anthocyanins may lead to interindividual differences in metabolite production. In this work, an anthocyanin-rich elderberry extract was incubated with three single gut microbial strains (, , and ) up to 4 days, to assess differences in their phenolic metabolism.
View Article and Find Full Text PDFSocial relationships shape human health and mortality via behavioral, psychosocial, and physiological mechanisms, including inflammatory and immune responses. Though not tested in human studies, recent primate studies indicate that the gut microbiome may also be a biological mechanism linking relationships to health. Integrating microbiota data into the 60-year-old Wisconsin Longitudinal Study, we found that socialness with family and friends is associated with differences in the human fecal microbiota.
View Article and Find Full Text PDFScope: Increased fruit consumption is associated with reduced risk of colitis. It has been investigated whether the anti-colitic effects of the polyphenol-rich aronia berry (Aronia mitschurinii 'Viking') are mediated through Th17 and Treg.
Methods And Results: Colitis is induced in recombinase activating gene-1 deficient mice injected with syngeneic CD4 CD62L naïve T cells.
Background: Convenient, reproducible, and rapid preservation of unique biological specimens is pivotal to their use in microbiome analyses. As an increasing number of human studies incorporate the gut microbiome in their design, there is a high demand for streamlined sample collection and storage methods that are amenable to different settings and experimental needs. While several commercial kits address collection/shipping needs for sequence-based studies, these methods do not preserve samples properly for studies that require viable microbes.
View Article and Find Full Text PDFUsing an untargeted metabolomics approach in initial (N = 99 subjects) and replication cohorts (N = 1,162), we discovered and structurally identified a plasma metabolite associated with cardiovascular disease (CVD) risks, N6,N6,N6-trimethyl-L-lysine (trimethyllysine, TML). Stable-isotope-dilution tandem mass spectrometry analyses of an independent validation cohort (N = 2,140) confirmed TML levels are independently associated with incident (3-year) major adverse cardiovascular event risks (hazards ratio [HR], 2.4; 95% CI, 1.
View Article and Find Full Text PDFAlzheimer's disease (AD) is the most common form of dementia. However, the etiopathogenesis of this devastating disease is not fully understood. Recent studies in rodents suggest that alterations in the gut microbiome may contribute to amyloid deposition, yet the microbial communities associated with AD have not been characterized in humans.
View Article and Find Full Text PDFThe single-component RcoM transcription factor couples an N-terminally bound heme cofactor with a C-terminal "LytTR" DNA-binding domain. Here the RcoM(Bx)-1 protein from Burkholderia xenovorans LB400 was heterologously expressed and then purified in a form with minimal bound CO (~10%) and was found to stably bind this effector with a nanomolar affinity. DNase I protection assays demonstrated that the CO-associated form binds with a micromolar affinity to two ~60-bp DNA regions, each comprised of a novel set of three direct-repeat binding sites spaced 21 bp apart on center.
View Article and Find Full Text PDFThe CO-responsive transcriptional regulator RcoM from Burkholderia xenovorans (BxRcoM) was recently identified as a Cys(thiolate)-ligated heme protein that undergoes a redox-mediated ligand switch; however, the Cys bound to the Fe(III) heme was not identified. To that end, we generated and purified three Cys-to-Ser variants of BxRcoM-2--C94S, C127S, and C130S--and examined their spectroscopic properties in order to identify the native Cys(thiolate) ligand. Electronic absorption, resonance Raman, and electron paramagnetic resonance (EPR) spectroscopies demonstrate that the C127S and C130S variants, like wild-type BxRcoM-2, bind a six-coordinate low-spin Fe(III) heme using a Cys/His ligation motif.
View Article and Find Full Text PDFLow levels of carbon monoxide inhibit the N(2)-dependent growth of Rhodospirillum rubrum unless the ∼100-residue CowN protein is expressed. Expression requires the CO-responsive regulator RcoM and is maximal in cells grown in the presence of CO and a poor nitrogen source, consistent with the role of CowN in N(2) fixation.
View Article and Find Full Text PDFSpectroscopic characterization of the newly discovered heme-PAS domain sensor protein BxRcoM-2 reveals that this protein undergoes redox-dependent ligand switching and CO- and NO-induced ligand displacement. The aerobic bacterium Burkholderia xenovorans expresses two homologous heme-containing proteins that promote CO-dependent transcription in vivo. These regulators of CO metabolism, BxRcoM-1 and BxRcoM-2, are gas-responsive heme-PAS domain proteins like mammalian neuronal PAS domain protein 2 (NPAS2) and the direct oxygen sensor from Escherichia coli ( EcDos).
View Article and Find Full Text PDFGenomic analysis suggested the existence of a CO-sensing bacterial transcriptional regulator that couples an N-terminal PAS fold domain to a C-terminal DNA-binding LytTR domain. UV/visible-light spectral analyses of heterologously expressed, purified full-length proteins indicated that they contained a hexacoordinated b-type heme moiety that avidly binds CO and NO. Studies of protein variants strongly suggested that the PAS domain residues His74 and Met104 serve as the heme Fe(II) axial ligands, with displacement of Met104 upon binding of the gaseous effectors.
View Article and Find Full Text PDFProtein Eng Des Sel
March 2008
Huntington's disease is one of nine known neurodegenerative diseases in which a disease-specific protein contains an unusually long polyglutamine (polyQ) stretch. The proteins associated with each disease are unrelated in sequence, size, structure, function or location of the mutation. In all cases, there is an apparent critical number of glutamines below which individuals do not develop disease.
View Article and Find Full Text PDFThe bacterial CO-sensing heme protein CooA activates expression of genes whose products perform CO-metabolism by binding its target DNA in response to CO binding. The required conformational change has been proposed to result from CO-induced displacement of the heme and of the adjacent C-helix, which connects the sensory and DNA-binding domains. Support for this proposal comes from UV Resonance Raman (UVRR) spectroscopy, which reveals a more hydrophobic environment for the C-helix residue Trp110 when CO binds.
View Article and Find Full Text PDFActa Crystallogr D Biol Crystallogr
March 2007
The CooA family of proteins are prokaryotic CO-sensing transcription factors that regulate the expression of genes involved in the utilization of CO as an energy source. They are homodimeric proteins that contain two hemes. Each monomer contains an N-terminal heme-binding domain and a C-terminal DNA-binding domain.
View Article and Find Full Text PDFThe cAMP receptor protein (CRP) of Escherichia coli exists in an equilibrium between active and inactive forms, and the effector, cAMP, shifts that equilibrium to the active form, thereby allowing DNA binding. For this equilibrium shift, a C-helix repositioning around the C-helix residues Thr-127 and Ser-128 has been reported as a critical local event along with proper beta4/beta5 positioning. Here we show that another C-helix residue, Arg-123, has a unique role in cAMP-dependent CRP activation in two different ways.
View Article and Find Full Text PDFThe heme-containing protein CooA of Rhodospirillum rubrum regulates the expression of genes involved in CO oxidation. CooA binds its target DNA sequence in response to CO binding to its heme. Activity measurements and resonance Raman (RR) spectra are reported for CooA variants that bind DNA even in the absence of CO, those in which the wild-type residues at the 121-126 positions, TSCMRT, are replaced by the residues AYLLRL or RYLLRL, and also for variants that bind DNA poorly in the presence of CO, such as L120S and L120F.
View Article and Find Full Text PDF