In view of the high propensity of tertiary alkyl amines to be bioactive, the development of new methods for their synthesis is an important challenge. Transition-metal catalysis has the potential to greatly expand the scope of nucleophilic substitution reactions of alkyl electrophiles; unfortunately, in the case of alkyl amines as nucleophiles, only one success has been described so far: the selective mono-alkylation of primary amines to form secondary amines. Here, using photoinduced copper catalysis, we report the synthesis of tertiary alkyl amines from secondary amines and unactivated alkyl electrophiles, two readily available coupling partners.
View Article and Find Full Text PDFIn recent years, remarkable progress has been described in the development of methods that simultaneously control vicinal stereochemistry, wherein both stereochemical elements are central chirality; in contrast, methods that control central and axial chirality are comparatively rare. Herein we report that a chiral nickel catalyst achieves the enantioconvergent and diastereoselective coupling of racemic secondary alkyl electrophiles with prochiral 1,3-enynes (in the presence of a hydrosilane) to generate chiral tetrasubstituted allenes that bear an adjacent stereogenic center. A carbon-carbon and a carbon-hydrogen bond are formed in this process, which provides good stereoselectivity and is compatible with an array of functional groups.
View Article and Find Full Text PDFOral antiretroviral agents provide life-saving treatments for millions of people living with HIV, and can prevent new infections via pre-exposure prophylaxis. However, some people living with HIV who are heavily treatment-experienced have limited or no treatment options, owing to multidrug resistance. In addition, suboptimal adherence to oral daily regimens can negatively affect the outcome of treatment-which contributes to virologic failure, resistance generation and viral transmission-as well as of pre-exposure prophylaxis, leading to new infections.
View Article and Find Full Text PDFMutations in β-cardiac myosin, the predominant motor protein for human heart contraction, can alter power output and cause cardiomyopathy. However, measurements of the intrinsic force, velocity, and ATPase activity of myosin have not provided a consistent mechanism to link mutations to muscle pathology. An alternative model posits that mutations in myosin affect the stability of a sequestered, super relaxed state (SRX) of the protein with very slow ATP hydrolysis and thereby change the number of myosin heads accessible to actin.
View Article and Find Full Text PDFMavacamten, formerly known as MYK-461 is a recently discovered novel small-molecule modulator of cardiac myosin that targets the underlying sarcomere hypercontractility of hypertrophic cardiomyopathy, one of the most prevalent heritable cardiovascular disorders. Studies on isolated cells and muscle fibers as well as intact animals have shown that mavacamten inhibits sarcomere force production, thereby reducing cardiac contractility. Initial mechanistic studies have suggested that mavacamten primarily reduces the steady-state ATPase activity by inhibiting the rate of phosphate release of β-cardiac myosin-S1, but the molecular mechanism of action of mavacamten has not been described.
View Article and Find Full Text PDFOBJECTIVE The ability to assess the risk of adverse events based on known patient factors and comorbidities would provide more effective preoperative risk stratification. Present risk assessment in spine surgery is limited. An adverse event prediction tool was developed to predict the risk of complications after spine surgery and tested on a prospective patient cohort.
View Article and Find Full Text PDFHypertrophic cardiomyopathy (HCM) is an inherited disease of heart muscle that can be caused by mutations in sarcomere proteins. Clinical diagnosis depends on an abnormal thickening of the heart, but the earliest signs of disease are hyperdynamic contraction and impaired relaxation. Whereas some in vitro studies of power generation by mutant and wild-type sarcomere proteins are consistent with mutant sarcomeres exhibiting enhanced contractile power, others are not.
View Article and Find Full Text PDFDecreased cardiac contractility is a central feature of systolic heart failure. Existing drugs increase cardiac contractility indirectly through signaling cascades but are limited by their mechanism-related adverse effects. To avoid these limitations, we previously developed omecamtiv mecarbil, a small-molecule, direct activator of cardiac myosin.
View Article and Find Full Text PDFPhytopathology
August 2003
ABSTRACT The forest landscape of the United States has changed over time, as has public concern for the trees, water, and wildlife. Early in the history of the United States, forests were viewed as an encumbrance and an inexhaustible resource, used to meet the needs of a growing nation. Around 1900, it became clear that old approaches were not sustainable and forest pathology saw its beginning.
View Article and Find Full Text PDF