Background: Increased cancer stem cell (CSC) content and SOX2 overexpression are common features in the development of resistance to therapy in hormone-dependent breast cancer, which remains an important clinical challenge. SOX2 has potential as biomarker of resistance to treatment and as therapeutic target, but targeting transcription factors is also challenging. Here, we examine the potential inhibitory effect of different polyoxometalate (POM) derivatives on SOX2 transcription factor in tamoxifen-resistant breast cancer cells.
View Article and Find Full Text PDFWnt signalling has been implicated as a driver of tumour cell metastasis, but less is known about which branches of Wnt signalling are involved and when they act in the metastatic cascade. Here, using a unique intravital imaging platform and fluorescent reporters, we visualised β-catenin/TCF-dependent and ATF2-dependent signalling activities during human cancer cell invasion, intravasation and metastatic lesion formation in the chick embryo host. We found that cancer cells readily shifted between states of low and high canonical Wnt activity.
View Article and Find Full Text PDFDickkopf-3 (Dkk-3) is a member of the Dickkopf family protein of secreted Wingless-related integration site (Wnt) antagonists that appears to modulate regulators of the host microenvironment. In contrast to the clear anti-tumorigenic effects of Dkk-3-based gene therapies, the role of endogenous Dkk-3 in cancer is context-dependent, with elevated expression associated with tumor promotion and suppression in different settings. The receptors and effectors that mediate the diverse effects of Dkk-3 have not been characterized in detail, contributing to an ongoing mystery of its mechanism of action.
View Article and Find Full Text PDFIntestinal fibrosis and stricture formation is an aggressive complication of Crohns disease (CD), linked to increased morbidity and costs. The present study investigates the contribution of Wingless-Int-1 (Wnt) signalling to intestinal fibrogenesis, considers potential cross-talk between Wnt and transforming growth factor β1 (TGFβ) signalling pathways, and assesses the therapeutic potential of small-molecule Wnt inhibitors. β-catenin expression was explored by immunohistochemistry (IHC) in formalin-fixed paraffin embedded (FFPE) tissue from patient-matched nonstrictured (NSCD) and strictured (SCD) intestine (n=6 pairs).
View Article and Find Full Text PDFBoth oncogenic and tumor suppressor functions have been described for junction plakoglobin (JUP), also known as γ-catenin. To clarify the role of JUP in prostate cancer, JUP protein expression was immunohistochemically detected in a tissue microarray containing 11 267 individual prostatectomy specimens. Considering all patients, high JUP expression was associated with adverse tumor stage (P = 0.
View Article and Find Full Text PDFThe expression of the secreted factor Wnt-11 is elevated in several types of cancer, including colorectal cancer, where it promotes cancer cell migration and invasion. Analysis of colorectal cancer gene expression databases associated WNT11 mRNA expression with increased likelihood of metastasis in a subset of patients. WNT11 expression was correlated with the expression of the Wnt receptors FZD6, RYK, and PTK7, and the combined expression of WNT11, FZD6 and RYK or PTK7 was associated with an increased risk of 5-year mortality rates.
View Article and Find Full Text PDFThe INhibitor of Growth (ING) family of tumor suppressors regulates the transcriptional state of chromatin by recruiting remodeling complexes to sites with histone H3 trimethylated at lysine 4 (H3K4me3). This modification is recognized by the plant homeodomain (PHD) present at the C-terminus of the five ING proteins. ING5 facilitates histone H3 acetylation by the HBO1 complex, and also H4 acetylation by the MOZ/MORF complex.
View Article and Find Full Text PDFIncreased cancer stem cell content during development of resistance to tamoxifen in breast cancer is driven by multiple signals, including Sox2-dependent activation of Wnt signalling. Here, we show that Sox2 increases and estrogen reduces the expression of the transcription factor Sox9. Gain and loss of function assays indicate that Sox9 is implicated in the maintenance of human breast luminal progenitor cells.
View Article and Find Full Text PDFA balanced chromosomal translocation disrupting DISC1 (Disrupted in Schizophrenia 1) gene has been linked to psychiatric diseases, such as major depression, bipolar disorder and schizophrenia. Since the discovery of this translocation, many studies have focused on understating the role of the truncated isoform of DISC1, hypothesizing that the gain of function of this protein could be behind the neurobiology of mental conditions, but not so many studies have focused in the mechanisms impaired due to its loss of function. For that reason, we performed an analysis on the cellular proteome of primary neurons in which DISC1 was knocked down with the goal of identifying relevant pathways directly affected by DISC1 loss of function.
View Article and Find Full Text PDFBreast cancer is the most frequently diagnosed cancer in women and the second most common cancer overall, with nearly 1.7 million new cases worldwide every year. Breast cancer patients need accurate tools for early diagnosis and to improve treatment.
View Article and Find Full Text PDFAberrant transforming growth factor-β (TGF-β) signaling is a hallmark of the stromal microenvironment in cancer. Dickkopf-3 (Dkk-3), shown to inhibit TGF-β signaling, is downregulated in prostate cancer and upregulated in the stroma in benign prostatic hyperplasia, but the function of stromal Dkk-3 is unclear. Here we show that DKK3 silencing in WPMY-1 prostate stromal cells increases TGF-β signaling activity and that stromal cell-conditioned media inhibit prostate cancer cell invasion in a Dkk-3-dependent manner.
View Article and Find Full Text PDFThe gene encodes a secreted protein, Dkk-3, that inhibits prostate tumor growth and metastasis. is downregulated by promoter methylation in many types of cancer, including prostate cancer. Gene silencing studies have shown that Dkk-3 maintains normal prostate epithelial cell homeostasis by limiting TGF-β/Smad signaling.
View Article and Find Full Text PDFWnt-11 promotes cancer cell migration and invasion independently of β-catenin but the receptors involved remain unknown. Here, we provide evidence that FZD is a major Wnt-11 receptor in prostate cancer that integrates Wnt-11 and TGF-β signals to promote EMT. FZD8 mRNA is upregulated in multiple prostate cancer datasets and in metastatic cancer cell lines in vitro and in vivo.
View Article and Find Full Text PDFGenome sequencing and gene expression analyses of prostate tumours have highlighted the potential importance of genetic and epigenetic changes observed in WNT signalling pathway components in prostate tumours - particularly in the development of castration-resistant prostate cancer. WNT signalling is also important in the prostate tumour microenvironment, in which WNT proteins secreted by the tumour stroma promote resistance to therapy, and in prostate cancer stem or progenitor cells, in which WNT-β-catenin signals promote self-renewal or expansion. Preclinical studies have demonstrated the potential of inhibitors that target WNT receptor complexes at the cell membrane or that block the interaction of β-catenin with lymphoid enhancer-binding factor 1 and the androgen receptor, in preventing prostate cancer progression.
View Article and Find Full Text PDFWnt proteins preferentially activate either β-catenin-dependent or β-catenin-independent signals, but the activity of a particular Wnt also depends on cellular context and receptor availability. We previously reported that Wnt-3a induces neural differentiation of human embryonic stem cell-derived neural stem cells (NSCs) in a β-catenin-independent manner by activating a signal involving JNK and the AP-1 family member ATF-2. Here, we report the results of a gene silencing approach to identify the Wnt receptors that mediate this response to Wnt-3a.
View Article and Find Full Text PDFDickkopf-3 (Dkk-3) is a secreted protein whose expression is downregulated in many types of cancer. Endogenous Dkk-3 is required for formation of acini in 3D cultures of prostate epithelial cells, where it inhibits transforming growth factor (TGF)-β/Smad signaling. Here, we examined the effects of Dkk-3 on the expression and activity of matrix metalloproteases (MMPs), which mediate the effects of TGF-β on extracellular matrix disassembly during tissue morphogenesis and promote invasion of tumor cells.
View Article and Find Full Text PDFCell Mol Life Sci
November 2015
The first mammalian Wnt to be discovered, Wnt-1, was found to be essential for the development of a large part of the mouse brain over 25 years ago. We have since learned that Wnt family secreted glycolipoproteins, of which there are nineteen, which activate a diverse network of signals that are particularly important during embryonic development and tissue regeneration. Wnt signals in the developing and adult brain can drive neural stem cell self-renewal, expansion, asymmetric cell division, maturation and differentiation.
View Article and Find Full Text PDFOncotarget
September 2014
Expression of Glycogen Synthase Kinase-3 (GSK-3) is elevated in prostate cancer and its inhibition reduces prostate cancer cell proliferation, in part by reducing androgen receptor (AR) signaling. However, GSK-3 inhibition can also activate signals that promote cell proliferation and survival, which may preclude the use of GSK-3 inhibitors in the clinic. To identify such signals in prostate cancer, we screened for changes in transcription factor target DNA binding activity in GSK-3-silenced cells.
View Article and Find Full Text PDFWnt/β-catenin signaling is essential for neurogenesis but less is known about β-catenin-independent Wnt signals. We show here that Wnt/activator protein-1 (AP-1) signaling drives differentiation of human embryonic stem cell and induced pluripotent stem cell-derived neural progenitor cells. Neuronal differentiation was accompanied by a reduction in β-catenin/Tcf-dependent transcription and target gene expression, increased levels and/or phosphorylation of activating transcription factor 2 (ATF2), cyclic AMP response element-binding protein, and c-Jun, and increased AP-1-dependent transcription.
View Article and Find Full Text PDFThe identification of mechanisms that maintain stem cell niche architecture and homeostasis is fundamental to our understanding of tissue renewal and repair. Cell adhesion is a well-characterized mechanism for developmental morphogenetic processes, but its contribution to the dynamic regulation of adult mammalian stem cell niches is still poorly defined. We show that N-cadherin-mediated anchorage of neural stem cells (NSCs) to ependymocytes in the adult murine subependymal zone modulates their quiescence.
View Article and Find Full Text PDFDickkopf-3 (Dkk-3) and Dkkl-1 (Soggy) are secreted proteins of poorly understood function that are highly expressed in subsets of neurons in the brain. To explore their potential roles during neuronal development, we examined their expression in Ntera-2 (NT2) human embryonal carcinoma cells, which differentiate into neurons upon treatment with retinoic acid (RA). RA treatment increased the mRNA and protein levels of Dkk-3 but not of Dkkl-1.
View Article and Find Full Text PDFDevelopment of resistance to therapy continues to be a serious clinical problem in breast cancer management. Cancer stem/progenitor cells have been shown to play roles in resistance to chemo‐ and radiotherapy. Here, we examined their role in the development of resistance to the oestrogen receptor antagonist tamoxifen.
View Article and Find Full Text PDFThe tumor suppressor Dickkopf-3 (Dkk-3) is rather a unique molecule. Although it is related to the Dickkopf family of secreted Wnt antagonists, it does not directly inhibit Wnt signaling, and its function and mechanism of action are unknown. Endogenous Dkk-3 was recently found to be required to limit cell proliferation both in the developing mouse prostate and in 3D cultures of human prostate epithelial cells.
View Article and Find Full Text PDFLoss of tissue organization is a hallmark of the early stages of cancer, and there is considerable interest in proteins that maintain normal tissue architecture. Prostate epithelial cells cultured in Matrigel form three-dimensional acini that mimic aspects of prostate gland development. The organization of these structures requires the tumor suppressor Dickkopf-3 (Dkk-3), a divergent member of the Dkk family of secreted Wnt signalling antagonists that is frequently downregulated in prostate cancer.
View Article and Find Full Text PDF