Publications by authors named "Robert Kurtzer"

Wild strawberry (Fragaria vesca) fruit contains several important phenylpropene aroma compounds such as eugenol, but cultivated varieties are mostly devoid of them. We have redirected the carbon flux in cultivated strawberry (Fragaria×ananassa) fruit from anthocyanin pigment biosynthesis to the production of acetates of hydroxycinnamyl alcohols, which serve as the precursors of the phenylpropenes, by downregulating the strawberry chalcone synthase (CHS) via RNAi-mediated gene silencing and, alternatively, by an antisense CHS construct. Simultaneous heterologous overexpression of a eugenol (EGS) and isoeugenol synthase (IGS) gene in the same cultivated strawberry fruits boosted the formation of eugenol, isoeugenol, and the related phenylpropenes chavicol and anol to concentrations orders of magnitude greater than their odor thresholds.

View Article and Find Full Text PDF

Strawberry (Fragaria x ananassa) fruit contains several anthocyanins that give the ripe fruits their attractive red color. The enzyme that catalyzes the formation of the first stable intermediate in the anthocyanin pathway is anthocyanidin-3-O-glucosyltransferase. A putative glycosyltransferase sequence (FaGT1) was cloned from a strawberry fruit cDNA library and the recombinant FaGT1 transferred UDP-glucose to anthocyanidins and, to a lesser extent, flavonols, generating the respective 3-O-glucosides.

View Article and Find Full Text PDF

Apocarotenoids resulting from the oxidative cleavage of carotenoids serve as important signaling and accessory molecules in a variety of biological processes. The enzymes catalyzing these reactions are referred to as carotenases or carotenoid oxygenases. Whether they act according to a monooxygenase mechanism, requiring two oxygens from different sources, or a dioxygenase mechanism is still a topic of controversy.

View Article and Find Full Text PDF