Publications by authors named "Robert Kramell"

Jasmonates are well-characterized signals in the development of plants and their response to abiotic and biotic stresses, such as touch and wounding by herbivores. A gap in our knowledge on jasmonate-induced processes, however, is the cellular localization of jasmonates. Here, a novel antibody-based approach was developed to visualize jasmonates in cross-sections of plant material.

View Article and Find Full Text PDF

Berberine, palmatine and dehydrocoreximine are end products of protoberberine biosynthesis. These quaternary protoberberines are elicitor inducible and, like other phytoalexins, are highly oxidized. The oxidative potential of these compounds is derived from a diverse array of biosynthetic steps involving hydroxylation, intra-molecular C-C coupling, methylenedioxy bridge formation and a dehydrogenation reaction as the final step in the biosynthesis.

View Article and Find Full Text PDF

• Two cDNAs encoding allene oxide cyclases (PpAOC1, PpAOC2), key enzymes in the formation of jasmonic acid (JA) and its precursor (9S,13S)-12-oxo-phytodienoic acid (cis-(+)-OPDA), were isolated from the moss Physcomitrella patens. • Recombinant PpAOC1 and PpAOC2 show substrate specificity against the allene oxide derived from 13-hydroperoxy linolenic acid (13-HPOTE); PpAOC2 also shows substrate specificity against the allene oxide derived from 12-hydroperoxy arachidonic acid (12-HPETE). • In protonema and gametophores the occurrence of cis-(+)-OPDA, but neither JA nor the isoleucine conjugate of JA nor that of cis-(+)-OPDA was detected.

View Article and Find Full Text PDF

Agrobacterium tumefaciens causes crown gall disease by transferring and integrating bacterial DNA (T-DNA) into the plant genome. To examine the physiological changes and adaptations during Agrobacterium-induced tumor development, we compared the profiles of salicylic acid (SA), ethylene (ET), jasmonic acid (JA), and auxin (indole-3-acetic acid [IAA]) with changes in the Arabidopsis thaliana transcriptome. Our data indicate that host responses were much stronger toward the oncogenic strain C58 than to the disarmed strain GV3101 and that auxin acts as a key modulator of the Arabidopsis-Agrobacterium interaction.

View Article and Find Full Text PDF

Benzylisoquinoline alkaloids (BIAs) are a group of nitrogen-containing plant secondary metabolites comprised of an estimated 2500 identified structures. In BIA metabolism, (S)-reticuline is a key branch-point intermediate that can be directed into several alkaloid subtypes with different structural skeleton configurations. The morphinan alkaloids are one subclass of BIAs produced in only a few plant species, most notably and abundantly in the opium poppy (Papaver somniferum).

View Article and Find Full Text PDF

The benzylisoquinoline alkaloids are a highly diverse group of about 2500 compounds which accumulate in a species-specific manner. Despite the numerous compounds which could be identified, the biosynthetic pathways and the participating enzymes or cDNAs could be characterized only for a few selected members, whereas the biosynthesis of the majority of the compounds is still largely unknown. In an attempt to characterize additional biosynthetic steps at the molecular level, integration of alkaloid and transcript profiling across Papaver species was performed.

View Article and Find Full Text PDF

Hormone-triggered activation of the jasmonate signaling pathway in Arabidopsis thaliana requires SCF(COI1)-mediated proteasome degradation of JAZ repressors. (-)-JA-L-Ile is the proposed bioactive hormone, and SCF(COI1) is its likely receptor. We found that the biological activity of (-)-JA-L-Ile is unexpectedly low compared to coronatine and the synthetic isomer (+)-JA-L-Ile, which suggests that the stereochemical orientation of the cyclopentanone-ring side chains greatly affects receptor binding.

View Article and Find Full Text PDF

Plants can metabolize sulfate by two pathways, which branch at the level of adenosine 5'-phosphosulfate (APS). APS can be reduced to sulfide and incorporated into Cys in the primary sulfate assimilation pathway or phosphorylated by APS kinase to 3'-phosphoadenosine 5'-phosphosulfate, which is the activated sulfate form for sulfation reactions. To assess to what extent APS kinase regulates accumulation of sulfated compounds, we analyzed the corresponding gene family in Arabidopsis thaliana.

View Article and Find Full Text PDF

Jasmonates are signals in plant stress responses and development. The exact mode of their action is still controversial. To modulate jasmonate levels intracellularly as well as compartment-specifically, transgenic Nicotiana tabacum plants expressing single-chain antibodies selected against the naturally occurring (3R,7R)-enantiomer of jasmonic acid (JA) were created in the cytosol and the endoplasmic reticulum.

View Article and Find Full Text PDF

Morphine biosynthesis was genetically engineered in an industrial elite line of the opium poppy (Papaver somniferum L.), to modify the production of alkaloids in plants. The cytochrome P-450-dependent monooxygenase (S)-N-methylcoclaurine 3'-hydroxylase (CYP80B3) lies on the pathway to the benzylisoquinoline alkaloid branch point intermediate (S)-reticuline.

View Article and Find Full Text PDF

Plants of the order Ranunculales, especially members of the species Papaver, accumulate a large variety of benzylisoquinoline alkaloids with about 2500 structures, but only the opium poppy (Papaver somniferum) and Papaver setigerum are able to produce the analgesic and narcotic morphine and the antitussive codeine. In this study, we investigated the molecular basis for this exceptional biosynthetic capability by comparison of alkaloid profiles with gene expression profiles between 16 different Papaver species. Out of 2000 expressed sequence tags obtained from P.

View Article and Find Full Text PDF

Two new amide-linked conjugates of jasmonic acid, N-[(3R,7R)-(-)-jasmonoyl]-(S)-dopa (3) and N-[(3R,7R)-(-)-jasmonoyl]-dopamine (5), were isolated in addition to the known compound N-[(3R,7R)-(-)-jasmonoyl]-(S)-tyrosine (2) from the methanolic extract of flowers of broad bean (Vicia faba). Their structures were proposed on the basis of spectroscopic data (LC-MS/MS) and chromatographic properties on reversed and chiral phases and confirmed by partial syntheses. Furthermore, tyrosine conjugates of two cucurbic acid isomers (7, 8) were detected and characterized by LC-MS.

View Article and Find Full Text PDF

Benzylisoquinoline alkaloids constitute a group of about 2,500 structures and are mainly produced by plants of the order Ranunculales. But only the opium poppy, Papaver somniferum, and Papaver setigerum are able to produce morphine. In this study, we started to investigate by gene expression analysis the molecular basis for this exceptional biosynthetic ability.

View Article and Find Full Text PDF

In the present study morphinan, tetrahydrobenzylisoquinoline, benzo[c]phenanthridine, and phthalideisoquinoline alkaloids were determined qualitatively and quantitatively by HPLC and LC-MS analysis in tissues of the Tasmanian Papaver somniferum L. elite cultivar C048-6-14-64. The data were compared with the results from the low-morphine cultivar "Marianne".

View Article and Find Full Text PDF

The berberine bridge enzyme cDNA bbe from Papaver somniferum L. was transformed in antisense orientation into seedling explants of the industrial elite line C048-6-14-64. In this way, 84 phenotypically normal To plants derived from embryogenic callus cultures were produced.

View Article and Find Full Text PDF

Coronalon, a synthetic 6-ethyl indanoyl isoleucine conjugate, has been designed as a highly active mimic of octadecanoid phytohormones that are involved in insect and disease resistance. The spectrum of biological activities that is affected by coronalon was investigated in nine different plant systems specifically responding to jasmonates and/or 12-oxo-phytodienoic acid. In all bioassays analyzed, coronalon demonstrated a general strong activity at low micromolar concentrations.

View Article and Find Full Text PDF

Colonization of barley (Hordeum vulgare cv Salome) roots by an arbuscular mycorrhizal fungus, Glomus intraradices Schenck & Smith, leads to elevated levels of endogenous jasmonic acid (JA) and its amino acid conjugate JA-isoleucine, whereas the level of the JA precursor, oxophytodienoic acid, remains constant. The rise in jasmonates is accompanied by the expression of genes coding for an enzyme of JA biosynthesis (allene oxide synthase) and of a jasmonate-induced protein (JIP23). In situ hybridization and immunocytochemical analysis revealed that expression of these genes occurred cell specifically within arbuscule-containing root cortex cells.

View Article and Find Full Text PDF