Publications by authors named "Robert Kluj"

The obligate intracellular Chlamydiaceae do not need to resist osmotic challenges and thus lost their cell wall in the course of evolution. Nevertheless, these pathogens maintain a rudimentary peptidoglycan machinery for cell division. They build a transient peptidoglycan ring, which is remodeled during the process of cell division and degraded afterwards.

View Article and Find Full Text PDF

Several metal-based carbon monoxide-releasing molecules (CORMs) are active CO donors with established antibacterial activity. Among them, CORM conjugates with azole antibiotics of type [Mn(CO)(2,2'-bipyridyl)(azole)] display important synergies against several microbes. We carried out a structure-activity relationship study based upon the lead structure of [Mn(CO)(Bpy)(Ctz)] by producing clotrimazole (Ctz) conjugates with varying metal and ligands.

View Article and Find Full Text PDF

Endo-β-N-acetylmuramidases, commonly known as lysozymes, are well-characterized antimicrobial enzymes that catalyze an endo-lytic cleavage of peptidoglycan; i.e., they hydrolyze the β-1,4-glycosidic bonds connecting N-acetylmuramic acid (MurNAc) and N-acetylglucosamine (GlcNAc).

View Article and Find Full Text PDF

With the aim to identify potential new targets to restore antimicrobial susceptibility of multidrug-resistant (MDR) isolates, we generated a high-density transposon (Tn) insertion mutant library in an MDR bloodstream isolate (isolate ID40). The depletion of Tn insertion mutants upon exposure to cefepime or meropenem was measured in order to determine the common resistome for these clinically important antipseudomonal β-lactam antibiotics. The approach was validated by clean deletions of genes involved in peptidoglycan synthesis/recycling, such as the genes for the lytic transglycosylase MltG, the murein (Mur) endopeptidase MepM1, the MurNAc/GlcNAc kinase AmgK, and the uncharacterized protein YgfB, all of which were identified in our screen as playing a decisive role in survival after treatment with cefepime or meropenem.

View Article and Find Full Text PDF

The ability to recover components of their own cell wall is a common feature of bacteria. This was initially recognized in the Gram-negative bacterium Escherichia coli, which recycles about half of the peptidoglycan of its cell wall during one cell doubling. Moreover, E.

View Article and Find Full Text PDF

The peptidoglycan of the bacterial cell wall undergoes a permanent turnover during cell growth and differentiation. In the Gram-positive pathogen , the major peptidoglycan hydrolase Atl is required for accurate cell division, daughter cell separation and autolysis. Atl is a bifunctional -acetylmuramoyl-L-alanine amidase/endo-β--acetylglucosaminidase that releases peptides and the disaccharide -acetylmuramic acid-β-1,4--acetylglucosamine (MurNAc-GlcNAc) from the peptido-glycan.

View Article and Find Full Text PDF