To increase antibody affinity against pathogens, positively selected GC-B cells initiate cell division in the light zone (LZ) of germinal centers (GCs). Among these, higher-affinity clones migrate to the dark zone (DZ) and vigorously proliferate by utilizing energy provided by oxidative phosphorylation (OXPHOS). However, it remains unknown how positively selected GC-B cells adapt their metabolism for cell division in the glycolysis-dominant, cell cycle arrest-inducing, hypoxic LZ microenvironment.
View Article and Find Full Text PDFGene expression is regulated by controlling distinct steps of the transcriptional cycle, including initiation, pausing, elongation, and termination. Kinases phosphorylate RNA polymerase II (RNA Pol II) and associated factors to control transitions between these steps and to act as central gene regulatory nodes. Similarly, phosphatases that dephosphorylate these components are emerging as important regulators of transcription, although their roles remain less well understood.
View Article and Find Full Text PDFThe Polycomb system has fundamental roles in regulating gene expression during mammalian development. However, how it controls transcription to enable gene repression has remained enigmatic. Here, using rapid degron-based depletion coupled with live-cell transcription imaging and single-particle tracking, we show how the Polycomb system controls transcription in single cells.
View Article and Find Full Text PDFDNA methylation (5mC) is a repressive gene regulatory mark widespread in vertebrate genomes, yet the developmental dynamics in which 5mC patterns are established vary across species. While mammals undergo two rounds of global 5mC erasure, teleosts, for example, exhibit localized maternal-to-paternal 5mC remodeling. Here, we studied 5mC dynamics during the embryonic development of sea lamprey, a jawless vertebrate which occupies a critical phylogenetic position as the sister group of the jawed vertebrates.
View Article and Find Full Text PDFTranscription must be tightly controlled to regulate gene expression and development. However, our understanding of the molecular mechanisms that influence transcription and how these are coordinated in cells to ensure normal gene expression remains rudimentary. Here, by dissecting the function of the SET1 chromatin-modifying complexes that bind to CpG island-associated gene promoters, we discover that they play a specific and essential role in enabling the expression of low to moderately transcribed genes.
View Article and Find Full Text PDFChromatin landscapes are disrupted during DNA replication and must be restored faithfully to maintain genome regulation and cell identity. The histone H3-H4 modification landscape is restored by parental histone recycling and modification of new histones. How DNA replication impacts on histone H2A-H2B is currently unknown.
View Article and Find Full Text PDFThe potential of pluripotent cells to respond to developmental cues and trigger cell differentiation is enhanced during the G1 phase of the cell cycle, but the molecular mechanisms involved are poorly understood. Variations in polycomb activity during interphase progression have been hypothesized to regulate the cell-cycle-phase-dependent transcriptional activation of differentiation genes during lineage transition in pluripotent cells. Here, we show that recruitment of Polycomb Repressive Complex 1 (PRC1) and associated molecular functions, ubiquitination of H2AK119 and three-dimensional chromatin interactions, are enhanced during S and G2 phases compared to the G1 phase.
View Article and Find Full Text PDFPolycomb group proteins (PcG), polycomb repressive complexes 1 and 2 (PRC1 and 2), repress lineage inappropriate genes during development to maintain proper cellular identities. It has been recognized that PRC1 localizes at the replication fork, however, the precise functions of PRC1 during DNA replication are elusive. Here, we reveal that a variant PRC1 containing PCGF1 (PCGF1-PRC1) prevents overloading of activators and chromatin remodeling factors on nascent DNA and thereby mediates proper deposition of nucleosomes and correct downstream chromatin configurations in hematopoietic stem and progenitor cells (HSPCs).
View Article and Find Full Text PDFPrecise control of gene expression underpins normal development. This relies on mechanisms that enable communication between gene promoters and other regulatory elements. In embryonic stem cells (ESCs), the cyclin-dependent kinase module Mediator complex (CKM-Mediator) has been reported to physically link gene regulatory elements to enable gene expression and also prime genes for induction during differentiation.
View Article and Find Full Text PDFThe Polycomb repressive system plays a fundamental role in controlling gene expression during mammalian development. To achieve this, Polycomb repressive complexes 1 and 2 (PRC1 and PRC2) bind target genes and use histone modification-dependent feedback mechanisms to form Polycomb chromatin domains and repress transcription. The inter-relatedness of PRC1 and PRC2 activity at these sites has made it difficult to discover the specific components of Polycomb chromatin domains that drive gene repression and to understand mechanistically how this is achieved.
View Article and Find Full Text PDFPolycomb repressive complexes-1 and -2 (PRC1 and 2) silence developmental genes in a spatiotemporal manner during embryogenesis. How Polycomb group (PcG) proteins orchestrate down-regulation of target genes upon differentiation, however, remains elusive. Here, by differentiating embryonic stem cells into embryoid bodies, we reveal a crucial role for the PCGF1-containing variant PRC1 complex (PCGF1-PRC1) to mediate differentiation-associated down-regulation of a group of genes.
View Article and Find Full Text PDFNat Rev Mol Cell Biol
December 2021
Precise control of gene expression is fundamental to cell function and development. Although ultimately gene expression relies on DNA-binding transcription factors to guide the activity of the transcription machinery to genes, it has also become clear that chromatin and histone post-translational modification have fundamental roles in gene regulation. Polycomb repressive complexes represent a paradigm of chromatin-based gene regulation in animals.
View Article and Find Full Text PDFHistone-modifying systems play fundamental roles in gene regulation and the development of multicellular organisms. Histone modifications that are enriched at gene regulatory elements have been heavily studied, but the function of modifications found more broadly throughout the genome remains poorly understood. This is exemplified by histone H2A monoubiquitylation (H2AK119ub1), which is enriched at Polycomb-repressed gene promoters but also covers the genome at lower levels.
View Article and Find Full Text PDFThe Polycomb repressive system functions through chromatin to regulate gene expression and development. In this issue of , Cohen and colleagues (pp. 354-366) use the developing mouse epidermis as a model system to show that the two central Polycomb repressive complexes, PRC1 and PRC2, have autonomous yet overlapping functions in repressing Polycomb target genes.
View Article and Find Full Text PDFPolycomb repressive complex 1 (PRC1) is an essential chromatin-based repressor of gene transcription. How PRC1 engages with chromatin to identify its target genes and achieve gene repression remains poorly defined, representing a major hurdle to our understanding of Polycomb system function. Here, we use genome engineering and single particle tracking to dissect how PRC1 binds to chromatin in live mouse embryonic stem cells.
View Article and Find Full Text PDFEpigenetic modifications on chromatin play important roles in regulating gene expression. Although chromatin states are often governed by multilayered structure, how individual pathways contribute to gene expression remains poorly understood. For example, DNA methylation is known to regulate transcription factor binding but also to recruit methyl-CpG binding proteins that affect chromatin structure through the activity of histone deacetylase complexes (HDACs).
View Article and Find Full Text PDFSomatic cell nuclear transfer (SCNT) can reprogram a somatic nucleus to a totipotent state. However, the re-organization of 3D chromatin structure in this process remains poorly understood. Using low-input Hi-C, we revealed that, during SCNT, the transferred nucleus first enters a mitotic-like state (premature chromatin condensation).
View Article and Find Full Text PDFBiochim Biophys Acta Gene Regul Mech
August 2020
The precise regulation of gene transcription is required to establish and maintain cell type-specific gene expression programs during multicellular development. In addition to transcription factors, chromatin, and its chemical modification, play a central role in regulating gene expression. In vertebrates, DNA is pervasively methylated at CG dinucleotides, a modification that is repressive to transcription.
View Article and Find Full Text PDFDistal regulatory elements control gene expression during differentiation. In this issue of Molecular Cell, Barnett et al. (2020) develop a new technology, called ATAC-Me, and discover that removal of DNA methylation is not a pre-requisite for the creation of accessible chromatin at active gene regulatory elements during cellular differentiation.
View Article and Find Full Text PDFAppropriate developmental gene regulation relies on the capacity of gene promoters to integrate inputs from distal regulatory elements, yet how this is achieved remains poorly understood. In embryonic stem cells (ESCs), a subset of silent developmental gene promoters are primed for activation by FBXL19, a CpG island binding protein, through its capacity to recruit CDK-Mediator. How mechanistically these proteins function together to prime genes for activation during differentiation is unknown.
View Article and Find Full Text PDFHow chromosome organization is related to genome function remains poorly understood. Cohesin, loop extrusion, and CCCTC-binding factor (CTCF) have been proposed to create topologically associating domains (TADs) to regulate gene expression. Here, we examine chromosome conformation in embryonic stem cells lacking cohesin and find, as in other cell types, that cohesin is required to create TADs and regulate A/B compartmentalization.
View Article and Find Full Text PDFThe Polycomb repressive system is an essential chromatin-based regulator of gene expression. Despite being extensively studied, how the Polycomb system selects its target genes is poorly understood, and whether its histone-modifying activities are required for transcriptional repression remains controversial. Here, we directly test the requirement for PRC1 catalytic activity in Polycomb system function.
View Article and Find Full Text PDFCpG islands (CGIs) are associated with the majority of mammalian gene promoters and function to recruit chromatin modifying enzymes. It has therefore been proposed that CGIs regulate gene expression through chromatin-based mechanisms, however in most cases this has not been directly tested. Here, we reveal that the histone H3 lysine 36 (H3K36) demethylase activity of the CGI-binding KDM2 proteins contributes only modestly to the H3K36me2-depleted state at CGI-associated gene promoters and is dispensable for normal gene expression.
View Article and Find Full Text PDFThe Polycomb system modifies chromatin and plays an essential role in repressing gene expression to control normal mammalian development. However, the components and mechanisms that define how Polycomb protein complexes achieve this remain enigmatic. Here, we use combinatorial genetic perturbation coupled with quantitative genomics to discover the central determinants of Polycomb-mediated gene repression in mouse embryonic stem cells.
View Article and Find Full Text PDF