Publications by authors named "Robert Kleta"

Class 2 HLA and PLA2R1 alleles are exceptionally strong genetic risk factors for membranous nephropathy (MN), leading, through an unknown mechanism, to a targeted autoimmune response. Introgressed archaic haplotypes (introduced from an archaic human genome into the modern human genome) might influence phenotypes through gene dysregulation. Here, we investigated the genomic region surrounding the PLA2R1 gene.

View Article and Find Full Text PDF

To discover rare disease-gene associations, we developed a gene burden analytical framework and applied it to rare, protein-coding variants from whole genome sequencing of 35,008 cases with rare diseases and their family members recruited to the 100,000 Genomes Project (100KGP). Following triaging of the results, 88 novel associations were identified including 38 with existing experimental evidence. We have published the confirmation of one of these associations, hereditary ataxia with , and independent confirmatory evidence has recently been published for four more.

View Article and Find Full Text PDF

Normal function of the C-terminal Eps15 homology domain-containing protein 1 (EHD1) has previously been associated with endocytic vesicle trafficking, shaping of intracellular membranes, and ciliogenesis. We recently identified an autosomal recessive missense mutation c.1192C>T (p.

View Article and Find Full Text PDF

Introduction: Steroid-sensitive nephrotic syndrome (SSNS) is the most common form of kidney disease in children worldwide. Genome-wide association studies (GWAS) have demonstrated the association of SSNS with genetic variation at and have identified several non- loci that aid in further understanding of disease pathophysiology. We sought to identify additional genetic loci associated with SSNS in children of Sri Lankan and European ancestry.

View Article and Find Full Text PDF

Background: Despite MN being one of the most common causes of nephrotic syndrome worldwide, its biological and environmental determinants are poorly understood in large-part due to it being a rare disease. Making use of the UK Biobank, a unique resource holding a clinical dataset and stored DNA, serum and urine for ~500,000 participants, this study aims to address this gap in understanding.

Methods: The primary outcome was putative MN as defined by ICD-10 codes occurring in the UK Biobank.

View Article and Find Full Text PDF

Introduction: Membranous nephropathy (MN) is the leading cause of nephrotic syndrome in adults and is characterized by detectable autoantibodies against glomerular antigens, most commonly phospholipase A2 receptor 1 (PLA2R1) and thrombospondin type-1 domain containing 7A (THSD7A). In Europeans, genetic variation in at least five loci, , , affects the risk of disease. Here, we investigated the genetic risk differences between different autoantibody states.

View Article and Find Full Text PDF

The kidneys have a central role in the control of acid-base homeostasis owing to bicarbonate reabsorption and production of ammonia and ammonium in the proximal tubule and active acid secretion along the collecting duct. Impaired acid excretion by the collecting duct system causes distal renal tubular acidosis (dRTA), which is characterized by the failure to acidify urine below pH 5.5.

View Article and Find Full Text PDF

Phosphomannomutase 2 (PMM2) deficiency causes Congenital Disorder of Glycosylation (PMM2-CDG), but does not have a recognised association with Inflammatory Bowel Disease (IBD). A distinct clinical syndrome of hyperinsulinism and autosomal recessive polycystic kidney disease (HIPKD) arises in the context of a specific variant in the PMM2 promotor, either in homozygosity, or compound heterozygous with a deleterious PMM2 variant. Here, we describe the development of IBD in three patients with PMM2-HIPKD, with onset of IBD at 0, 6, and 10 years of age.

View Article and Find Full Text PDF

Background: Idiop athic nephrotic syndrome (INS) is classified in children according to response to initial corticosteroid therapy into steroid-sensitive (SSNS) and steroid-resistant nephrotic syndrome (SRNS), and in adults according to histology into minimal change disease (MCD) and focal segmental glomerulosclerosis (FSGS). However, there is well-recognised phenotypic overlap between these entities. Genome-wide association studies (GWAS) have shown a strong association between SSNS and variation at HLA, suggesting an underlying immunological basis.

View Article and Find Full Text PDF

Posterior urethral valves (PUV) are the commonest cause of end-stage renal disease in children, but the genetic architecture of this rare disorder remains unknown. We performed a sequencing-based genome-wide association study (seqGWAS) in 132 unrelated male PUV cases and 23,727 controls of diverse ancestry, identifying statistically significant associations with common variants at 12q24.21 (p=7.

View Article and Find Full Text PDF

Background: The endocytic reabsorption of proteins in the proximal tubule requires a complex machinery and defects can lead to tubular proteinuria. The precise mechanisms of endocytosis and processing of receptors and cargo are incompletely understood. EHD1 belongs to a family of proteins presumably involved in the scission of intracellular vesicles and in ciliogenesis.

View Article and Find Full Text PDF

Background: FAM20A, a recently discovered protein, is thought to have a fundamental role in inhibiting ectopic calcification. Several studies have demonstrated that variants of FAM20A are causative for the rare autosomal recessive disorder, enamel-renal syndrome (ERS). ERS is characterized by defective mineralization of dental enamel and nephrocalcinosis suggesting that FAM20A is an extracellular matrix protein, dysfunction of which causes calcification of the secretory epithelial tissues.

View Article and Find Full Text PDF

Background: Gitelman syndrome is the most frequent hereditary salt-losing tubulopathy characterized by hypokalemic alkalosis and hypomagnesemia. Gitelman syndrome is caused by biallelic pathogenic variants in encoding the Na-Cl cotransporter (NCC) expressed in the distal convoluted tubule. Pathogenic variants of , , , or may result in the same renal phenotype of Gitelman syndrome, as they can lead to reduced NCC activity.

View Article and Find Full Text PDF

The mitochondria of the proximal tubule are essential for providing energy in this nephron segment, whose ATP generation is almost exclusively oxygen dependent. In addition, mitochondria are involved in a variety of metabolic processes and complex signaling networks. Proximal tubular mitochondrial dysfunction can therefore affect renal function in very different ways.

View Article and Find Full Text PDF

Introduction: Membranous nephropathy (MN) is the most common cause of nephrotic syndrome (NS) in adults and is a leading cause of end-stage renal disease due to glomerulonephritis. Primary MN has a strong male predominance, accounting for approximately 65% of cases; yet, currently associated genetic loci are all located on autosomes. Previous reports of familial MN have suggested the existence of a potential X-linked susceptibility locus.

View Article and Find Full Text PDF

Evolution moves in mysterious ways. Excretion of waste products by glomerular filtration made perfect sense when life evolved in the ocean. Yet, the associated loss of water and solutes became a problem when life moved onto land: a serious design change was needed and this occurred in the form of ever more powerful tubules that attached to the glomerulus.

View Article and Find Full Text PDF

Background: Polycystic kidney disease with hyperinsulinaemic hypoglycaemia (HIPKD) is a recently described disease caused by a single nucleotide variant, c.-167G>T, in the promoter region of PMM2 (encoding phosphomannomutase 2), either in homozygosity or compound heterozygosity with a pathogenic coding variant in trans. All patients identified so far are of European descent, suggesting a possible founder effect.

View Article and Find Full Text PDF
Article Synopsis
  • * Mutations in the KCNJ16 gene were linked to EAST/SeSAME syndrome, which causes symptoms like renal salt wasting, low potassium levels, and hearing loss in affected individuals.
  • * Functional studies showed that these mutations impair potassium channel activity, leading to disruptions in kidney functions related to acid-base balance and salt reabsorption.
View Article and Find Full Text PDF

Immune thrombotic thrombocytopenic purpura (iTTP) is an ultra-rare, life-threatening disorder, mediated through severe ADAMTS13 deficiency causing multi-system micro-thrombi formation, and has specific human leukocyte antigen associations. We undertook a large genome-wide association study to investigate additional genetically distinct associations in iTTP. We compared two iTTP patient cohorts with controls, following standardized genome-wide quality control procedures for single-nucleotide polymorphisms and imputed HLA types.

View Article and Find Full Text PDF

Background: Primary nephrogenic diabetes insipidus (NDI) is a rare disorder and little is known about treatment practices and long-term outcome.

Methods: Paediatric and adult nephrologists contacted through European professional organizations entered data in an online form.

Results: Data were collected on 315 patients (22 countries, male 84%, adults 35%).

View Article and Find Full Text PDF

Steroid-sensitive nephrotic syndrome (SSNS) is the most common form of nephrotic syndrome in childhood and there is growing evidence that genetics play a role in the susceptibility for the disease. Familial clustering has been observed and has led to several studies on familial SSNS trying to identify a monogenic cause of the disease. Until now, however, none of these have provided convincing evidence for Mendelian inheritance.

View Article and Find Full Text PDF

Introduction: Diabetic kidney disease (DKD) is the leading cause of end-stage kidney disease worldwide and a major cause of premature mortality in diabetes mellitus (DM). While improvements in care have reduced the incidence of kidney disease among those with DM, the increasing prevalence of DM means that the number of patients worldwide with DKD is increasing. Improved understanding of the biology of DKD and identification of novel therapeutic targets may lead to new treatments.

View Article and Find Full Text PDF

Objective: In most cases of renovascular hypertension in children, the cause is unclear. The aim of this study was to investigate genetic variation as a factor in the development of renovascular hypertension in children.

Methods: In a cohort of 37 unrelated children from a single tertiary referral center, exome sequencing was performed.

View Article and Find Full Text PDF

RNA modifications play a fundamental role in cellular function. Pseudouridylation, the most abundant RNA modification, is catalyzed by the H/ACA small ribonucleoprotein (snoRNP) complex that shares four core proteins, dyskerin (DKC1), NOP10, NHP2, and GAR1. Mutations in , , or cause dyskeratosis congenita (DC), a disorder characterized by telomere attrition.

View Article and Find Full Text PDF