Human Activity Recognition (HAR) plays an important role in the automation of various tasks related to activity tracking in such areas as healthcare and eldercare (telerehabilitation, telemonitoring), security, ergonomics, entertainment (fitness, sports promotion, human-computer interaction, video games), and intelligent environments. This paper tackles the problem of real-time recognition and repetition counting of 12 types of exercises performed during athletic workouts. Our approach is based on the deep neural network model fed by the signal from a 9-axis motion sensor (IMU) placed on the chest.
View Article and Find Full Text PDF