Publications by authors named "Robert Kistenberg"

: A systematic review of 30 full-text articles was conducted on user acceptance of technologies that assist people who have functional difficulties (FD) with activities of daily living (ADLs) and mobility. Our objective was to better understand the adoption of mobility assistive products (mobAP) among people with FD. : A literature search in EBSCO, PubMed, SCOPUS, and Web of Science yielded 423 articles.

View Article and Find Full Text PDF

Cutaneous feedback from feet is involved in regulation of muscle activity during locomotion, and the lack of this feedback results in motor deficits. We tested the hypothesis that locomotor changes caused by local unilateral anesthesia of paw pads in the cat could be reduced/reversed by electrical stimulation of cutaneous and proprioceptive afferents in the distal tibial nerve during stance. Several split-belt conditions were investigated in four adult female cats.

View Article and Find Full Text PDF

Introduction: The three major unresolved problems in bone-anchored limb prosthetics are stable, infection-free integration of skin with a percutaneous bone implant, robust skeletal fixation between the implant and host bone, and a secure interface of sensory nerves and muscles with a prosthesis for the intuitive bidirectional prosthetic control. Here we review results of our completed work and report on recent progress.

Materials And Methods: Eight female adult cats received skin- and bone-integrated pylon (SBIP) and eight male adult cats received SBIP-peripheral neural interface (PNI) pylon into the right distal tibia.

View Article and Find Full Text PDF

Ongoing animal preclinical studies on transcutaneous bone-anchored prostheses have aimed to improve biomechanics of prosthetic locomotion in people with limb loss. It is much less common to translate successful developments in human biomechanics and prosthetic research to veterinary medicine to treat animals with limb loss. Current standard of care in veterinary medicine is amputation of the whole limb if a distal segment cannot be salvaged.

View Article and Find Full Text PDF

Prior work in amputees and partial limb immobilization have shown improved neural and behavioral outcomes in using their residual limb with prosthesis when undergoing observation-based training with a prosthesis-using actor compared to an intact limb. It was posited that these improvements are due to an alignment of user with the actor. It may be affected by visual angles that allow emphasis of critical joint actions which may promote behavioral changes.

View Article and Find Full Text PDF

Background Previous studies have demonstrated improved neurobehavioral outcomes when prosthesis users learn task-specific behaviors by imitating movements of prosthesis users (matched limb) compared with intact limbs (mismatched limb). Objective This study is the first to use a unique combination of neurophysiological and task performance methods to investigate prosthetic device training strategies from a cognitive motor control perspective. Intact nonamputated prosthesis users (NAPUs) donned specially adapted prosthetic devices to simulate the wrist and forearm movement that persons with transradial limb loss experience.

View Article and Find Full Text PDF

Our previous work demonstrated that the action encoding parietofrontal network, which is crucial in planning and executing motor tasks, is less active in prosthesis users who imitate movements of intact actors (mismatched limb) versus prosthesis users (matched limb). Such activation could have behavioral consequences in prosthesis users rehabilitating with intact therapists. The goal was to identify behavioral effects of matched versus mismatched limb action imitation in naïve users of prostheses.

View Article and Find Full Text PDF

Background: Despite the number of advantages of bone-anchored prostheses, their use in patients is limited due to the lack of complete skin-implant integration. The objective of the present study was to develop an animal model that would permit both detailed investigations of gait with a bone-anchored limb prosthesis and histological analysis of the skin-implant-bone interface after physiological loading of the implant during standing and walking.

Methods: Full-body mechanics of walking in two cats were recorded and analyzed before and after implantation of a percutaneous porous titanium pylon into the right tibia and attachment of a prosthesis.

View Article and Find Full Text PDF

New technology and materials have advanced prosthetic designs to enable people who rely on artificial limbs to achieve feats never dreamed before. However, the latest and the greatest technology is not appropriate for everyone. The aim of this article is to present contemporary options that are available for people who rely on artificial limbs to enhance their quality of life for mobility and independence.

View Article and Find Full Text PDF

The mirror neuron system (MNS) has been attributed with increased activation in motor-related cortical areas upon viewing of another's actions. Recent work suggests that limb movements that are similar and dissimilar in appearance to that of the viewer equivalently activate the MNS. It is unclear if this result can be observed in the action encoding areas in amputees who use prosthetic devices.

View Article and Find Full Text PDF

Purpose: The objectives of this study were to compare three á priori alignment methods and evaluate them based on initial gait quality and further alignment changes required to optimize gait. Á priori alignment is requisite for monolimbs, transtibial prostheses in which the socket and pylon are made from one piece of plastic, because monolimbs have no alignment adjustability.

Method: The three methods investigated were traditional bench alignment (TRAD), vertical alignment axis (VAA) and anatomical based alignment (ABA).

View Article and Find Full Text PDF

Cyclists with unilateral transtibial amputation (CTA) provide a unique model to study integration of the neuromuscular and bicycle systems while having the option to modify this integration via the properties of the prosthesis. This study included eight CTA and nine intact cyclists. The cyclists pedaled on a stationary bicycle with instrumented force pedals.

View Article and Find Full Text PDF

This article presents recent results in the development of the skin and bone integrated pylon (SBIP) intended for direct skeletal attachment of limb prostheses. In our previous studies of the porous SBIP-1 and SBIP-2 prototypes, the bond site between the porous pylons and residuum bone and skin did not show the inflammation characteristically observed when solid pylons are used. At the same time, porosity diminished the strength of the pylon.

View Article and Find Full Text PDF

People with amputations may find cycling advantageous for exercise, transportation and rehabilitation. The reciprocal nature of stationary cycling also makes it a viable model for research in motor control because the body is supported by the saddle allowing the researcher to focus on the cyclic movement of the legs without the confounding variable of balance. The purpose of this article is to provide an overview of the cycling task in intact cyclists and relate this information to understanding the challenges faced by cyclists with transtibial amputations (CTA).

View Article and Find Full Text PDF

Amputation is a common late stage sequel of peripheral vascular disease and diabetes or a sequel of accidental trauma, civil unrest and landmines. The functional impairments affect many facets of life including but not limited to: Mobility; activities of daily living; body image and sexuality. Classification, measurement and comparison of the consequences of amputations has been impeded by the limited availability of internationally, multiculturally standardized instruments in the amputee setting.

View Article and Find Full Text PDF