In ultrawideband transmission, the overall noise comes from the amplification, fiber properties at different wavelengths, and stimulated Raman scattering, and its impact on channels across transmission bands is different. This requires a range of methods to mitigate the noise impact. Performing channel-wise power pre-emphasis and constellation shaping, one can compensate for the noise tilt and attain maximum throughput.
View Article and Find Full Text PDFWe experimentally investigated a pilot-aided digital signal processing (DSP) chain in combination with high-order geometric constellation shaping to increase the achievable information rates (AIRs) in standard intradyne coherent transmission systems. We show that the AIR of our system at 15 GBd was maximised using geometrically-shaped (GS) 2048 quadrature amplitude modulation (QAM), reaching 18.0 b/4D-symbol in back-to-back transmission and 16.
View Article and Find Full Text PDFA frequency-domain multiple-input multiple-output (FD-MIMO) equalizer employing a momentum-based gradient descent update algorithm is proposed for polarization multiplexing coherent receivers. Its performance in operation with dynamically varying optical channels is investigated and the impact of filter update delays, arising from the latency of the fast Fourier transforms (FFTs) and other digital signal processing (DSP) operations in the feedback loop, is assessed. We show that the proposed momentum-based gradient descent algorithm used to control the equalizer response has significantly greater tolerance to feedback delay than the conventional gradient descent algorithm.
View Article and Find Full Text PDFWe demonstrate a method for experimentally characterizing the second order statistics of nonlinear interference noise (NLIN) as an intersymbol interference (ISI) process. The method enables measurement of the properties of high-order ISI coefficients, which have been largely overlooked in the past. The ability of measuring these statistics is imperative for designing effective NLIN mitigation schemes.
View Article and Find Full Text PDFThe optimisation of span length when designing optical communication systems is important from both performance and cost perspectives. In this paper, the optimisation of inter-amplifier spacing and the potential increase of span length at fixed information rates in optical communication systems with practically feasible nonlinearity compensation schemes have been investigated. It is found that in DP-16QAM, DP-64QAM and DP-256QAM systems with practical transceiver noise limitations, single-channel digital backpropagation can allow a 50% reduction in the number of amplifiers without sacrificing information rates compared to systems with optimal span lengths and linear compensation.
View Article and Find Full Text PDFThe use of spectrally shaped amplified spontaneous emission noise (SS-ASE) as a method for emulating interfering channels in optical fibre transmission systems has been studied. It is shown that the use of SS-ASE leads to a slightly pessimistic performance relative to the use of conventionally modulated interfering channels in the nonlinear regime. The additional nonlinear interference noise (on the channel under test), due to the Gaussian nature of SS-ASE, has been calculated using a combination of the Gaussian noise (GN) and enhanced GN (EGN) models for the entire C-band (4.
View Article and Find Full Text PDFNyquist-spaced transmission and digital signal processing have proved effective in maximising the spectral efficiency and reach of optical communication systems. In these systems, Kerr nonlinearity determines the performance limits, and leads to spectral broadening of the signals propagating in the fibre. Although digital nonlinearity compensation was validated to be promising for mitigating Kerr nonlinearities, the impact of spectral broadening on nonlinearity compensation has never been quantified.
View Article and Find Full Text PDFAn analytical model considering modulation-dependent nonlinear effects and second-order interactions between signal and optical amplifier noise is presented for Nyquist-spaced wavelength-division-multiplexing optical communication systems. System performance of dual-polarization modulation formats, such as DP-QPSK, DP-16QAM, and DP-64QAM, is investigated using both the analytical model and numerical simulations. A good agreement between analytical and numerical results shows that, in the case of full-field nonlinearity compensation, accounting for second-order interactions becomes essential to predict system performance of both single- and multi-channel systems at optimum launched powers and beyond.
View Article and Find Full Text PDFAs the bandwidths of optical communication systems are increased to maximize channel capacity, the impact of stimulated Raman scattering (SRS) on the achievable information rates (AIR) in ultra-wideband coherent WDM systems becomes significant, and is investigated in this work, for the first time. By modifying the GN-model to account for SRS, it is possible to derive a closed-form expression that predicts the optical signal-to-noise ratio of all channels at the receiver for bandwidths of up to 15 THz, which is in excellent agreement with numerical calculations. It is shown that, with fixed modulation and coding rate, SRS leads to a drop of approximately 40% in achievable information rates for bandwidths higher than 15 THz.
View Article and Find Full Text PDFThe performance of digital back-propagation (DBP) for distributed Raman amplified optical communication systems is evaluated through analytical models and numerical simulations, and is compared with conventional lumped amplifier solutions, such as EDFA. The complexity of the DBP algorithm including the characteristic signal power profile of distributed Raman amplifiers is assessed. The use of full-field DBP in distributed Raman amplified systems leads to 1.
View Article and Find Full Text PDFThis paper investigates the impact of transceiver noise on the performance of digital back-propagation (DBP). A generalized expression to estimate the signal-to-noise ratio (SNR) obtained using DBP in the presence of transceiver noise is described. This new expression correctly accounts for the nonlinear beating between the transceiver noise and the signal in the optical fiber transmission link.
View Article and Find Full Text PDFThe relationship between modulation format and the performance of multi-channel digital back-propagation (MC-DBP) in ideal Nyquist-spaced optical communication systems is investigated. It is found that the nonlinear distortions behave independent of modulation format in the case of full-field DBP, in contrast to the cases of electronic dispersion compensation and partial-bandwidth DBP. It is shown that the minimum number of steps per span required for MC-DBP depends on the chosen modulation format.
View Article and Find Full Text PDFAchievable information rates (AIRs) of wideband optical communication systems using a ∼40 nm (∼5 THz) erbium-doped fiber amplifier and ∼100 nm (∼12.5 THz) distributed Raman amplification are estimated based on a first-order perturbation analysis. The AIRs of each individual channel have been evaluated for DP-64QAM, DP-256QAM, and DP-1024QAM modulation formats.
View Article and Find Full Text PDFSingle-polarization direct-detection transceivers may offer advantages compared to digital coherent technology for some metro, back-haul, access and inter-data center applications since they offer low-cost and complexity solutions. However, a direct-detection receiver introduces nonlinearity upon photo detection, since it is a square-law device, which results in signal distortion due to signal-signal beat interference (SSBI). Consequently, it is desirable to develop effective and low-cost SSBI compensation techniques to improve the performance of such transceivers.
View Article and Find Full Text PDFMost of the digital data transmitted are carried by optical fibres, forming the great part of the national and international communication infrastructure. The information-carrying capacity of these networks has increased vastly over the past decades through the introduction of wavelength division multiplexing, advanced modulation formats, digital signal processing and improved optical fibre and amplifier technology. These developments sparked the communication revolution and the growth of the Internet, and have created an illusion of infinite capacity being available.
View Article and Find Full Text PDFWe demonstrate the use of spectrally shaped amplified spontaneous emission (SS-ASE) noise for wideband channel loading in the investigation of nonlinear transmission limits in wavelength-division multiplexing transmission experiments using Nyquist-spaced channels. The validity of this approach is explored through statistical analysis and experimental transmission of Nyquist-spaced 10 GBaud polarization-division multiplexing (PDM) quadrature phase-shift keying and PDM-16-ary quadrature amplitude modulation (QAM) channels, co-propagated with SS-ASE over single mode fiber. It is shown that this technique, which is simpler to implement than a fully modulated comb of channels, is valid for distances exceeding 240 km for PDM-16QAM with dispersion of 16 ps/nm/km, yields a good agreement with theory, and provides a conservative measure of system performance.
View Article and Find Full Text PDFAn experimental demonstration of direct-detection single-sideband Nyquist-pulse-shaped 16-QAM subcarrier modulated (Nyquist-SCM) transmission implementing a receiver-based signal-signal beat interference (SSBI) cancellation technique is described. The performance improvement with SSBI mitigation, which compensates for the nonlinear distortion caused by square-law detection, was quantified by simulations and experiments for a 7 × 25 Gb/s WDM Nyquist-SCM signal with a net optical information spectral density (ISD) of 2.0 (b/s)/Hz.
View Article and Find Full Text PDFSuperchannel transmission spaced at the symbol rate, known as Nyquist spacing, has been demonstrated for effectively maximizing the optical communication channel capacity and spectral efficiency. However, the achievable capacity and reach of transmission systems using advanced modulation formats are affected by fibre nonlinearities and equalization enhanced phase noise (EEPN). Fibre nonlinearities can be effectively compensated using digital back-propagation (DBP).
View Article and Find Full Text PDFTransmission of a net 467-Gb/s PDM-16QAM Nyquist-spaced superchannel is reported with an intra-superchannel net spectral efficiency (SE) of 6.6 (b/s)/Hz, over 364-km SMF-28 ULL ultra-low loss optical fiber, enabled by bi-directional second-order Raman amplification and digital nonlinearity compensation. Multi-channel digital back-propagation (MC-DBP) was applied to compensate for nonlinear interference; an improvement of 2 dB in Q(2) factor was achieved when 70-GHz DBP bandwidth was applied, allowing an increase in span length of 37 km.
View Article and Find Full Text PDFThe achievable transmission capacity of conventional optical fibre communication systems is limited by nonlinear distortions due to the Kerr effect and the difficulty in modulating the optical field to effectively use the available fibre bandwidth. In order to achieve a high information spectral density (ISD), while simultaneously maintaining transmission reach, multi-channel fibre nonlinearity compensation and spectrally efficient data encoding must be utilised. In this work, we use a single coherent super-receiver to simultaneously receive a DP-16QAM super-channel, consisting of seven spectrally shaped 10GBd sub-carriers spaced at the Nyquist frequency.
View Article and Find Full Text PDFThe performance of digital backpropagation (DBP) equalization when applied over multiple channels to compensate for the nonlinear impairments in optical fiber transmission systems is investigated. The impact of a suboptimal multichannel DBP operation is evaluated, where implementation complexity is reduced by varying parameters such as the number of nonlinear steps per span and sampling rate. Results have been obtained for a reference system consisting of a 5×32 Gbaud PDM-16QAM superchannel with 33 GHz subchannel spacing and Nyquist pulse shaping under long-haul transmission.
View Article and Find Full Text PDFThe nonlinear transmission performance of quasi-Nyquist wavelength-division multiplexing (qN-WDM) and reduced guard interval orthogonal frequency-division multiplexing (RGI-OFDM) using polarization-division multiplexing quadrature phase-shift-keying (PDM-QPSK) and quadrature amplitude modulation (PDM-QAM-8 and PDM-QAM-16) with high information spectral densities have been compared for the first time, both by simulations and analytically. The results show that both systems are able to reach similar maximum transmission distances of approximately 6700km, 2600km and 1100km over standard single-mode fibre for the spectral efficiencies of 3.43 bits/s/Hz, 5.
View Article and Find Full Text PDFWe investigated ultra-long-haul transmission of polarization-switched QPSK (PS-QPSK) and polarization-division-multiplexed BPSK (PDM-BPSK) at 42.9 Gbit/s experimentally as well as by means of computer simulations. PDM-BPSK allowed transmission distances in excess of 14,040 km to be achieved, compared to 13,640 km for PS-QPSK.
View Article and Find Full Text PDFWe select the optimum design parameters for real-time optical OFDM transceivers running at 25 Gb/s and analyze power consumption and ASIC footprint for a variety of configurations based on synthesis for a 65nm standard-cell library. Experiments quantify the effects of modulation format and the number of IFFT/FFT points used in transceivers.
View Article and Find Full Text PDFWe designed at the register-transfer-level digital signal processing (DSP) circuits for 21.8 Gb/s and 43.7 Gb/s QPSK- and 16-QAM-encoded optical orthogonal frequency division multiplexing (OFDM) transceivers, and carried out synthesis and simulations assessing performance, power consumption and chip area.
View Article and Find Full Text PDF