Our aim in CASP12 was to improve our Template-Based Modeling (TBM) methods through better model selection, accuracy self-estimate (ASE) scores and refinement. To meet this aim, we developed two new automated methods, which we used to score, rank, and improve upon the provided server models. Firstly, the ModFOLD6_rank method, for improved global Quality Assessment (QA), model ranking and the detection of local errors.
View Article and Find Full Text PDFReFOLD is a novel hybrid refinement server with integrated high performance global and local Accuracy Self Estimates (ASEs). The server attempts to identify and to fix likely errors in user supplied 3D models of proteins via successive rounds of refinement. The server is unique in providing output for multiple alternative refined models in a way that allows users to quickly visualize the key residue locations, which are likely to have been improved.
View Article and Find Full Text PDF