Publications by authors named "Robert K Ho"

The T-box containing family member, TBX5, has been shown to play important functional roles in the pectoral appendages of a variety of vertebrate species. While a single TBX5 gene exists in all tetrapods studied to date, the zebrafish genome retains two paralogues, designated as tbx5a and tbx5b, resulting from a whole genome duplication in the teleost lineage. Zebrafish deficient in tbx5a lack pectoral fin buds, whereas zebrafish deficient in tbx5b exhibit misshapen pectoral fins, showing that both paralogues function in fin development.

View Article and Find Full Text PDF

In this study, we elucidate a single cell resolution fate map in the zebrafish in a sub-section of the anterior Lateral Plate Mesoderm (aLPM) at 18 hpf. Our results show that this tissue is not organized into segregated regions but gives rise to intermingled pericardial sac, peritoneum, pharyngeal arch and cardiac precursors. We further report upon asymmetrical contributions of lateral aLPM-derived heart precursors-specifically that twice as many heart precursors arise from the right side versus the left side of the embryo.

View Article and Find Full Text PDF

The molecular regulators that determine the precise position of the vertebrate limb along the anterio-posterior axis have not been identified. One model suggests that a combination of hox genes in the lateral plate mesoderm (LPM) promotes formation of the limb field, however redundancy among duplicated paralogs has made this model difficult to confirm. In this study, we identify an optimal window during mid-gastrulation stages when transient mis-regulation of retinoic acid signaling or the caudal related transcription factor, Cdx4, both known regulators of hox genes, can alter the position of the pectoral fin field.

View Article and Find Full Text PDF

The dorsal, anal and caudal fins of vertebrates are proposed to have originated by the partitioning and transformation of the continuous median fin fold that is plesiomorphic to chordates. Evaluating this hypothesis has been challenging, because it is unclear how the median fin fold relates to the adult median fins of vertebrates. To understand how new median fins originate, here we study the development and diversity of adipose fins.

View Article and Find Full Text PDF

TBX5 is essential for limb and heart development. Mutations in TBX5 are associated with Holt-Oram syndrome in humans. Due to the teleost specific genome duplication, zebrafish have two copies of TBX5: tbx5a and tbx5b.

View Article and Find Full Text PDF

Codevelopment of the lungs and heart underlies key evolutionary innovations in the transition to terrestrial life. Cardiac specializations that support pulmonary circulation, including the atrial septum, are generated by second heart field (SHF) cardiopulmonary progenitors (CPPs). It has been presumed that transcription factors required in the SHF for cardiac septation, e.

View Article and Find Full Text PDF

The maternal-to-zygotic transition (MZT) is one of the most profound and tightly orchestrated processes during the early life of embryos, yet factors that shape the temporal pattern of vertebrate MZT are largely unknown. Here we show that over one-third of zebrafish maternal messenger RNAs (mRNAs) can be N-methyladenosine (mA) modified, and the clearance of these maternal mRNAs is facilitated by an mA-binding protein, Ythdf2. Removal of Ythdf2 in zebrafish embryos decelerates the decay of mA-modified maternal mRNAs and impedes zygotic genome activation.

View Article and Find Full Text PDF

The sub-division of the posterior-most territory of the neural plate results in the formation of two distinct neural structures, the hindbrain and the spinal cord. Although many of the molecular signals regulating the development of these individual structures have been elucidated, the mechanisms involved in delineating the boundary between the hindbrain and spinal cord remain elusive. Two molecules, retinoic acid (RA) and the Cdx4 transcription factor have been previously implicated as important regulators of hindbrain and spinal cord development, respectively.

View Article and Find Full Text PDF

Tbx5 plays a pivotal role in vertebrate forelimb initiation, and loss-of-function experiments result in deformed or absent forelimbs in all taxa studied to date. Combining single-cell fate mapping and three-dimensional cell tracking in the zebrafish, we describe a Tbx5a-dependent cell convergence pattern that is both asymmetric and topological within the fin-field lateral plate mesoderm during early fin bud initiation. We further demonstrate that a mesodermal Fgf24 convergence cue controlled by Tbx5a underlies this asymmetric convergent motility.

View Article and Find Full Text PDF

Progenitors of the zebrafish pronephros, red blood and trunk endothelium all originate from the ventral mesoderm and often share lineage with one another, suggesting that their initial patterning is linked. Previous studies have shown that spadetail (spt) mutant embryos, defective in tbx16 gene function, fail to produce red blood cells, but retain the normal number of endothelial and pronephric cells. We report here that spt mutants are deficient in all the types of early blood, have fewer endothelial cells as well as far more pronephric cells compared to wildtype.

View Article and Find Full Text PDF

Pectoral fins are known to play important roles in swimming for many adult fish; however, their functions in fish larvae are unclear. We examined routine pectoral fin movement during rhythmic forward swimming and used genetic ablation to test hypotheses of fin function in larval zebrafish. Fins were active throughout bouts of slow swimming.

View Article and Find Full Text PDF

Background: A complex network of signaling pathways and transcription factors regulates vertebrate mesoderm development. Zebrafish mutants provide a powerful tool for examining the roles of individual genes in such a network. spadetail (spt) is a mutant with a lesion in tbx16, a T-box transcription factor involved in mesoderm development; the mutant phenotype includes disrupted primitive red blood cell formation as well as disrupted somitogenesis.

View Article and Find Full Text PDF

During development, Met signaling regulates a range of cellular processes including growth, differentiation, survival and migration. The Met gene encodes a tyrosine kinase receptor, which is activated by Hgf (hepatocyte growth factor) ligand. Altered regulation of human MET expression has been implicated in autism.

View Article and Find Full Text PDF

Vertebrate hematopoiesis first produces primitive (embryonic) lineages and ultimately generates the definitive (adult) blood. Whereas definitive hematopoiesis may produce many diverse blood types via a common multipotent progenitor, primitive hematopoiesis has been thought to produce only erythrocytes or macrophages via progenitors that are unipotent for single blood lineages. Using a variety of in vivo cell-tracing techniques, we show that primitive blood in zebrafish derives from two different progenitor types.

View Article and Find Full Text PDF

During development of the limbs, Hox genes belonging to the paralogous groups 9-13 are expressed in three distinct phases, which play key roles in the segmental patterning of limb skeletons. In teleost fishes, which have a very different organization in their fin skeletons, it is not clear whether a similar patterning mechanism is at work. To determine whether Hox genes are also expressed in several distinct phases during teleost paired fin development, we re-analyzed the expression patterns of hox9-13 genes during development of pectoral fins in zebrafish.

View Article and Find Full Text PDF

The spinal cord is a unique vertebrate feature that originates, together with the hindbrain, from the caudal neural plate. Whereas the hindbrain subdivides into rhombomeres, the spinal cord remains unsegmented. We have identified Cdx transcription factors as key determinants of the spinal cord region in zebrafish.

View Article and Find Full Text PDF

The Actinopterygii (ray-finned fishes) is the largest and most diverse vertebrate group, but little is agreed about the timing of its early evolution. Estimates using mitochondrial genomic data suggest that the major actinopterygian clades are much older than divergence dates implied by fossils. Here, the timing of the evolutionary origins of these clades is reinvestigated using morphological, and nuclear and mitochondrial genetic data.

View Article and Find Full Text PDF

To further our understanding of FOG gene function during cardiac development, we utilized zebrafish to examine FOG's role in the early steps of heart morphogenesis. We identified fragments of three fog genes in the zebrafish genomic database and isolated full-length coding sequences for each of these genes by using a combination of RT-PCR and 5'-RACE. One gene was similar to murine FOG-1 (fog1), while the remaining two were similar to murine FOG-2 (fog2a and fog2b).

View Article and Find Full Text PDF

The first morphological sign of vertebrate postcranial body segmentation is the sequential production from posterior paraxial mesoderm of blocks of cells termed somites. Each of these embryonic structures is polarized along the anterior/posterior axis, a subdivision first distinguished by marker gene expression restricted to rostral or caudal territories of forming somites. To better understand the generation of segment polarity in vertebrates, we have studied the zebrafish mutant fused somites (fss), because its paraxial mesoderm lacks segment polarity.

View Article and Find Full Text PDF

Segmentation of paraxial mesoderm in vertebrates is regulated by a genetic oscillator that manifests as a series of wavelike or cyclic gene expression domains in the embryo. In zebrafish, this oscillator involves members of the Delta/Notch intercellular signaling pathway, and its down-stream targets, the Her family of transcriptional repressors. Loss of function of any one of the genes of this system, such as her7, gives rise to segmentation defects in the posterior trunk and tail, concomitant with a disruption of cyclic expression domains, indicating that the oscillator is required for posterior segmentation.

View Article and Find Full Text PDF

The T-box gene eomesodermin (eomes) has been implicated in mesoderm specification and patterning in both zebrafish and frog. Here, we describe an additional function for eomes in the control of morphogenesis. Epiboly, the spreading and thinning of an epithelial cell sheet, is a central component of gastrulation in many species; however, despite its importance, little is known about its molecular control.

View Article and Find Full Text PDF

Zebrafish embryonic red blood cells (RBCs) develop in trunk intermediate mesoderm (IM), and early macrophages develop in the head, suggesting that local microenvironmental cues regulate differentiation of these two blood lineages. spadetail (spt) mutant embryos, which lack trunk paraxial mesoderm (PM) due to a cell-autonomous defect in tbx16, fail to produce embryonic RBCs but retain head macrophage development. In spt mutants, initial hematopoietic gene expression is absent in trunk IM, although endothelial and pronephric expression is retained, suggesting that early blood progenitor development is specifically disrupted.

View Article and Find Full Text PDF

Early embryonic development in many organisms relies upon maternal molecules deposited into the egg prior to fertilization. We have cloned and characterized a maternal T-box gene in the zebrafish, eomesodermin (eomes). During oogenesis, the eomes transcript becomes localized to the cortex of the oocyte.

View Article and Find Full Text PDF

The van gogh (vgo) mutant in zebrafish is characterized by defects in the ear, pharyngeal arches and associated structures such as the thymus. We show that vgo is caused by a mutation in tbx1, a member of the large family of T-box genes. tbx1 has been recently suggested to be a major contributor to the cardiovascular defects in DiGeorge deletion syndrome (DGS) in humans, a syndrome in which several neural crest derivatives are affected in the pharyngeal arches.

View Article and Find Full Text PDF

The T-box genes Tbx4 and Tbx5 have been shown to have key functions in the specification of the identity of the vertebrate forelimb (Tbx5) and hindlimb (Tbx4). Here we show that in zebrafish, Tbx5 has an additional early function that precedes the formation of the limb bud itself. Functional knockdown of zebrafish tbx5 through the use of an antisense oligonucleotide resulted in a failure to initiate fin bud formation, leading to the complete loss of pectoral fins.

View Article and Find Full Text PDF