Publications by authors named "Robert Joynt"

Large-scale arrays of quantum-dot spin qubits in Si/SiGe quantum wells require large or tunable energy splittings of the valley states associated with degenerate conduction band minima. Existing proposals to deterministically enhance the valley splitting rely on sharp interfaces or modifications in the quantum well barriers that can be difficult to grow. Here, we propose and demonstrate a new heterostructure, the "Wiggle Well", whose key feature is Ge concentration oscillations inside the quantum well.

View Article and Find Full Text PDF

Recent experiments have shown rotation of the plane of polarization of light reflected from the surface of some superconductors. The photon energy exceeds the electronic bandwidth, so that completely filled or completely empty bands must play a role. We show that in strong-coupling theory a Coulomb interaction can produce an order parameter in the unoccupied band that explains the observations.

View Article and Find Full Text PDF

Motivated by limitations and capabilities of neutral atom qubits, we examine whether measurement-free error correction can produce practical error thresholds. We show that this can be achieved by extracting redundant syndrome information, giving our procedure extra fault tolerance and eliminating the need for ancilla verification. The procedure is particularly favorable when multiqubit gates are available for the correction step.

View Article and Find Full Text PDF

After the death in 2012 of Dr. Robert Joynt, who served Neurology® as CPC Section Editor, an unfinished manuscript was found on his computer. It would have been his sixth Sherlock Holmes pastiche.

View Article and Find Full Text PDF

We investigate the lifetime of two-electron spin states in a few-electron Si/SiGe double dot. At the transition between the (1,1) and (0,2) charge occupations, Pauli spin blockade provides a readout mechanism for the spin state. We use the statistics of repeated single-shot measurements to extract the lifetimes of multiple states simultaneously.

View Article and Find Full Text PDF

We investigate the charging energy level statistics of disordered interacting electrons in quantum dots by numerical calculations using the Hartree approximation. The aim is to obtain a global picture of the statistics as a function of disorder and interaction strengths. We find Poisson statistics at very strong disorder, Wigner-Dyson statistics for weak disorder and interactions, and a Gaussian intermediate regime.

View Article and Find Full Text PDF

Electron spin qubits in semiconductors are attractive from the viewpoint of long coherence times. However, single spin measurement is challenging. Several promising schemes incorporate ancillary tunnel couplings that may provide unwanted channels for decoherence.

View Article and Find Full Text PDF