Cancer Biother Radiopharm
December 2015
The present article describes the preparation of β-emitter lutetium-177-labeled zirconia colloid and its preliminary physicochemical and biological evaluation of suitability for local radionuclide therapy. The new (177)Lu-labeled therapeutic radiopharmaceutical candidate was based on the synthesis mode of a previously described zirconia nanoparticle system. The size and shape of the developed radiopharmaceutical compound were observed through a scanning electron microscope and dynamic light scattering methods.
View Article and Find Full Text PDFActual state of affairs and future perspectives of SPECT radiopharmaceuticals regarding local and international data were summarized. Beyond conventional gamma-emitting radioisotopes, localization studies with beta emitting therapeutic radiopharmaceuticals hold increasing importance. Extension of hybrid (SPECT/CT) equipments has modified conventional scintigraphic and SPECT methods as well but more important changes come into the world through novel ligands for specific diagnoses and therapy.
View Article and Find Full Text PDFCancer Biother Radiopharm
October 2014
The present article describes the preparation, characterization, and biological evaluation of Thulium-170 ((170)Tm) [T1/2 = 128.4 days; Eβmax = 968 keV; Eγ = 84 keV (3.26%)] labeled tin oxide microparticles for its possible use in radiation synovectomy (RSV) of medium-sized joints.
View Article and Find Full Text PDFA new biocompatible, biodegradable, self-assembled chitosan-based nanoparticulate product was successfully synthesized and radiolabeled with technetium-99m, and studied as a potential new SPECT or SPECT/CT imaging agent for diagnosis of folate receptor overexpressing tumors. In the present study we examined the conditions of a preclinical application of this labeled nanosystem in early diagnosis of spontaneously diseased veterinary patient using a human SPECT/CT device. The results confirmed that the nanoparticles accumulated in tumor cells overexpressing folate receptors, contrast agent revealed higher uptake in the tumor for a long time.
View Article and Find Full Text PDF