A full-field swept-source optical coherence tomography (FF-SS-OCT) for in vivo murine retinal imaging is demonstrated. The on-axis FF-SS-OCT system was built in a Mach-Zehnder interferometer configuration employing a tunable laser source with an adjustable sweep rate and sweep range in conjunction with a fast 2D-CMOS camera. A large field retinal (coherent) illumination was accomplished using an imaging interface comprised of a short-focal length imaging lens and a contact lens.
View Article and Find Full Text PDFHigh-speed, phase contrast retinal and blood flow imaging using an adaptive optics partially confocal multi-line ophthalmosocope (AO-pcMLO) is described. It allows for simultaneous confocal and phase contrast imaging with various directional multi-line illumination by using a single 2D camera and a digital micromirror device (DMD). Both vertical and horizontal line illumination directions were tested, for photoreceptor and vascular imaging.
View Article and Find Full Text PDFGlaucoma is a group of eye diseases characterized by the thinning of the retinal nerve fiber layer (RNFL), which is primarily caused by the progressive death of retinal ganglion cells (RGCs). Precise monitoring of these changes at a cellular resolution in living eyes is significant for glaucoma research. In this study, we aimed to assess the effectiveness of temporal speckle averaging optical coherence tomography (TSA-OCT) and dynamic OCT (dOCT) in examining the static and potential dynamic properties of RGCs and RNFL in living mouse eyes.
View Article and Find Full Text PDFA high-speed, adaptive optics partially confocal multi-spot ophthalmoscope (AO-pcMSO) using a digital micromirror device (DMD) in the illumination channel and a fast 2D CMOS camera is described. The camera is synchronized with the DMD allowing projection of multiple, simultaneous AO-corrected spots onto the human retina. Spatial filtering on each raw retinal image before reconstruction works as an array virtual pinholes.
View Article and Find Full Text PDFOptical coherence tomography (OCT) and scanning laser ophthalmoscopy (SLO) are imaging technologies invented in the 1980s that have revolutionized the field of retinal diagnostics and are now commonly used in ophthalmology clinics as well as in vision science research. Adaptive optics (AO) technology enables high-fidelity correction of ocular aberrations, resulting in improved resolution and sensitivity for both SLO and OCT systems. The potential of gathering multi-modal cellular-resolution information in a single instrument is of great interest to the ophthalmic imaging community.
View Article and Find Full Text PDFPurpose: To perform in vivo evaluation of the structural morphology and vascular plexuses of the neurosensory retina and choroid across vertebrate species using swept-source optical coherence tomography (SS-OCT) and SS-OCT angiography (SS-OCTA) imaging.
Methods: A custom-built SS-OCT system with an incorporated flexible imaging arm was used to acquire the three-dimensional (3D) retinal OCT and vascular OCTA data of five different vertebrates: a mouse (C57BL/6J), a rat (Long Evans), a gray short-tailed opossum (Monodelphis domestica), a white sturgeon (Acipenser transmontanus), and a great horned owl (Bubo virginianus).
Results: In vivo structural morphology of the retina and choroid, as well as en face OCTA images of retinal and choroidal vasculature of all species were generated.
Clustered regularly interspaced short palindromic repeats (CRISPR)-based genomic disruption of vascular endothelial growth factor A () with a single gRNA suppresses choroidal neovascularization (CNV) in preclinical studies, offering the prospect of long-term anti-angiogenesis therapy for neovascular age-related macular degeneration (AMD). Genome editing using CRISPR-CRISPR-associated endonucleases (Cas9) with multiple guide RNAs (gRNAs) can enhance gene-ablation efficacy by augmenting insertion-deletion (indel) mutations with gene truncations but may also increase the risk of off-target effects. In this study, we compare the effectiveness of adeno-associated virus (AAV)-mediated CRISPR-Cas9 systems using single versus paired gRNAs to target two different loci in the gene that are conserved in human, rhesus macaque, and mouse.
View Article and Find Full Text PDFThe visualization and assessment of retinal microvasculature are important in the study, diagnosis, monitoring, and guidance of treatment of ocular and systemic diseases. With the introduction of optical coherence tomography angiography (OCTA), it has become possible to visualize the retinal microvasculature volumetrically and without a contrast agent. Many lab-based and commercial clinical instruments, imaging protocols and data analysis methods and metrics, have been applied, often inconsistently, resulting in a confusing picture that represents a major barrier to progress in applying OCTA to reduce the burden of disease.
View Article and Find Full Text PDFOptoretinogram, a technique in which optical coherence tomography (OCT) is used to measure retinal functions in response to a visible light stimulus, can be a potentially useful tool to quantify retinal health alterations. Existing experimental studies on animals have focused on measuring the global retinal response by transversally averaging 3D data across the retina, which minimizes the spatial resolution of the signals, and limits the signal-to-noise ratio because only central B-scans are collected and analyzed. These problems were addressed in this study by collecting volumetric data to probe functional signals and developing an improved 3D registration approach to align such series-acquired OCT volumes.
View Article and Find Full Text PDFFull-field swept-source optical coherence tomography (FF-SS-OCT) is an emerging technology with potential applications in ophthalmic imaging, microscopy, metrology, and other domains. Here we demonstrate a novel method of multiplexing FF-SS-OCT signals using carrier modulation (CM). The principle of CM could be used to inspect various properties of the scattered light, e.
View Article and Find Full Text PDFA new method based on polarization-sensitive optical coherence tomography (PS-OCT) is introduced to determine the polarization properties of human retinal vessel walls, . Measurements were obtained near the optic nerve head of three healthy human subjects. The double pass phase retardation per unit depth (DPPR/UD), which is proportional to the birefringence, is higher in artery walls, presumably because of the presence of muscle tissue.
View Article and Find Full Text PDFMelanosomes, lipofuscin, and melanolipofuscin are the three principal types of pigmented granules found in retinal pigment epithelium (RPE) cells. Changes in the density of melanosomes and lipofuscin in RPE cells are considered hallmarks of various retinal diseases, including Stargardt disease and age-related macular degeneration (AMD). Herein, we report the potential of an in vivo multimodal imaging technique based on directional back-scattering and short-wavelength fundus autofluorescence (SW-FAF) to study disease-related changes in the density of melanosomes and lipofuscin granules in RPE cells.
View Article and Find Full Text PDFBackground And Objective: Automatic segmentation of retinal blood vessels makes a major contribution in CADx of various ophthalmic and cardiovascular diseases. A procedure to segment thin and thick retinal vessels is essential for medical analysis and diagnosis of related diseases. In this article, a novel methodology for robust vessel segmentation is proposed, handling the existing challenges presented in the literature.
View Article and Find Full Text PDFBiomed Opt Express
October 2020
A retinal imaging system was designed for full-field (FF) swept-source (SS) optical coherence tomography (OCT) with cellular resolution. The system incorporates a real-time adaptive optics (AO) subsystem and a very high-speed CMOS sensor, and is capable of acquiring volumetric images of the retina at rates up to 1 kHz. While digital aberration correction (DAC) is an attractive potential alternative to AO, it has not yet been shown to provide resolution allowing visualization of cones in the fovea, where early detection of functional deficits is most critical.
View Article and Find Full Text PDFPurpose: To investigate the major organelles of the retinal pigment epithelium (RPE) in wild-type (WT, control) mice and their changes in pigmented Abca4 knockout (Abca4-/-) mice with in situ morphologic, spatial, and spectral characterization of live ex vivo flat-mounted RPE using multicolor confocal fluorescence microscopy (MCFM).
Methods: In situ imaging of RPE flat-mounts of agouti Abca4-/- (129S4), agouti WT (129S1/SvlmJ) controls, and B6 albino mice (C57BL/6J-Tyrc-Brd) was performed with a Nikon A1 confocal microscope. High-resolution confocal image z-stacks of the RPE cell mosaic were acquired with four different excitation wavelengths (405 nm, 488 nm, 561 nm, and 640 nm).
Here we provide a counter-example to the conventional wisdom in biomedical optics that longer wavelengths aid deeper imaging in tissue. Specifically, we investigate visible light optical coherence tomography of Bruch's membrane (BM) in the non-pathologic eyes of humans and two mouse strains. Surprisingly, we find that shorter visible wavelengths improve the visualization of BM in pigmented eyes, where it is located behind a highly scattering layer of melanosomes in the retinal pigment epithelium (RPE).
View Article and Find Full Text PDFNoninvasive, objective measurement of rod function is as significant as that of cone function, and for retinal diseases such as retinitis pigmentosa and age-related macular degeneration, rod function may be a more sensitive biomarker of disease progression and efficacy of treatment than cone function. Functional imaging of single human rod photoreceptors, however, has proven difficult because their small size and rapid functional response pose challenges for the resolution and speed of the imaging system. Here, we describe light-evoked, functional responses of human rods and cones, measured noninvasively using a synchronized adaptive optics optical coherence tomography (OCT) and scanning light ophthalmoscopy (SLO) system.
View Article and Find Full Text PDFThe retinal ganglion cell (RGC) competence factor ATOH7 is dynamically expressed during retinal histogenesis. transcription is controlled by a promoter-adjacent primary enhancer and a remote shadow enhancer (SE). Deletion of the human SE causes nonsyndromic congenital retinal nonattachment (NCRNA) disease, characterized by optic nerve aplasia and total blindness.
View Article and Find Full Text PDFPurpose: To investigate diurnal variation in the length of mouse rod outer segments in vivo.
Methods: The lengths of rod inner and outer segments (RIS, ROS) of dark-adapted albino mice maintained on a 12-hour dark:12-hour light cycle with light onset 7 AM were measured at prescribed times (6:30 AM, 11 AM, 3:30 PM) during the diurnal cycle with optical coherence tomography (OCT), taking advantage of increased visibility, after a brief bleaching exposure, of the bands corresponding to RIS/ROS boundaries and ROS tips (ROST).
Results: Deconvolution of OCT depth profiles resolved two backscatter bands located 7.
The efficacy of therapeutics for brain tumors is seriously hampered by multiple barriers to drug delivery, including severe destabilizing effects in the blood circulation, the blood-brain barrier/blood-brain tumor barrier (BBB/BBTB), and limited tumor uptake. Here, a sequential targeting in crosslinking (STICK) nanodelivery strategy is presented to circumvent these important physiological barriers to improve drug delivery to brain tumors. STICK nanoparticles (STICK-NPs) can sequentially target BBB/BBTB and brain tumor cells with surface maltobionic acid (MA) and 4-carboxyphenylboronic acid (CBA), respectively, and simultaneously enhance nanoparticle stability with pH-responsive crosslinkages formed by MA and CBA in situ.
View Article and Find Full Text PDFHuman CD34 stem cells are mobilized from bone marrow to sites of tissue ischemia and play an important role in tissue revascularization. This study used a murine model to test the hypothesis that intravitreal injection of human CD34 stem cells harvested from bone marrow (BMSCs) can have protective effects in eyes with diabetic retinopathy. Streptozotocin-induced diabetic mice (C57BL/6J) were used as a model for diabetic retinopathy.
View Article and Find Full Text PDFAdaptive Optics (AO) is required to achieve diffraction limited resolution in many real-life imaging applications in biology and medicine. AO is essential to guarantee high fidelity visualization of cellular structures for retinal imaging by correcting ocular aberrations. Aberration correction for mouse retinal imaging by direct wavefront measurement has been demonstrated with great success.
View Article and Find Full Text PDF