Publications by authors named "Robert J Winchester"

Introduction: T follicular (TFH) and peripheral helper (TPH) cells have been increasingly recognized as a pathogenic subset of CD4 T cells in systemic lupus erythematosus (SLE). The SLAM Associated Protein (SAP) regulates TFH and TPH function by binding to the co-stimulatory signaling lymphocyte activation molecule family (SLAMF) receptors that mediate T cell - B cell interactions. SAP and SLAMF are critical for TPH-dependent B cell maturation into autoantibody-producing plasma cells that characterize SLE pathogenesis.

View Article and Find Full Text PDF

Background: Immune checkpoint inhibitors (ICIs) have improved outcomes and extended patient survival in several tumor types. However, ICIs often induce immune-related adverse events (irAEs) that warrant therapy cessation, thereby limiting the overall effectiveness of this class of therapeutic agents. Currently, available therapies used to treat irAEs might also blunt the antitumor activity of the ICI themselves.

View Article and Find Full Text PDF

Background: PD-1 is an immune checkpoint on T cells, and interventions to block this receptor result in T cell activation and enhanced immune response to tumors and pathogens. Reciprocally, despite a decade of research, approaches to treat autoimmunity with PD-1 agonists have only had limited successful. To resolve this, new methods must be developed to augment PD-1 function beyond engaging the receptor.

View Article and Find Full Text PDF

PD-1 is an inhibitory receptor in T cells, and antibodies that block its interaction with ligands augment anti-tumor immune responses. The clinical potential of these agents is limited by the fact that half of all patients develop immune-related adverse events (irAEs). To generate insights into the cellular changes that occur during anti-PD-1 treatment, we performed single-cell RNA sequencing of circulating T cells collected from patients with cancer.

View Article and Find Full Text PDF

Objective: Adipose tissue macrophages (ATMs) are a potent source of inflammatory cytokines, with profound effects on adipose tissue function, yet their potential role in rheumatoid arthritis (RA) pathobiology is largely unstudied.

Methods: Periumbilical subcutaneous adipose tissue was obtained from 36 RA patients and 22 non-RA controls frequency matched on demographics and body mass index. Samples were stained for the macrophage marker CD68, and the average proportions of ATMs, crown-like structures (periadipocyte aggregates of 3 or more ATMs), and fibrosis were compared between groups.

View Article and Find Full Text PDF

Effective drug selection is the current challenge in rheumatoid arthritis (RA). Treatment failure may follow different pathomechanisms and therefore require investigation of molecularly defined subgroups. In this exploratory study, whole blood transcriptomes of 68 treatment-naïve early RA patients were analyzed before initiating MTX.

View Article and Find Full Text PDF

NK cells are large granular lymphocytes that form a critical component of the innate immune system, whose functions include the killing of cells expressing stress-induced molecules. It is increasingly accepted that despite being considered prototypical effector cells, NK cells require signals to reach their full cytotoxic potential. We previously showed that IL-15 is capable of arming CD8 effector T cells to kill independently of their TCR via NKG2D in a cPLA2-dependent process.

View Article and Find Full Text PDF

This study investigated the potential use of static osmotic loading as a cartilage tissue engineering strategy for growing clinically relevant grafts from either synovium-derived stem cells (SDSCs) or chondrocytes. Bovine SDSCs and chondrocytes were individually encapsulated in 2% w/v agarose and divided into chondrogenic media of osmolarities 300 (hypotonic), 330 (isotonic), and 400 (hypertonic, physiologic) mOsM for up to 7 weeks. The application of hypertonic media to constructs comprised of SDSCs or chondrocytes led to increased mechanical properties as compared to hypotonic (300mOsM) or isotonic (330mOsM) media (p<0.

View Article and Find Full Text PDF

Type 1 diabetes (T1D) is caused by autoimmune destruction of the insulin-producing beta-cells of the islets of Langerhans. One still open question is where naive islet-reactive T cells encounter antigens and become stimulated. In this report we have re-examined the expression of MHC class II (MHCII) genes in human islets to further explore the possibility that non-professional antigen presenting cells (APCs) within islets contribute to autoimmunity.

View Article and Find Full Text PDF

Celiac disease is an intestinal inflammatory disorder induced by dietary gluten in genetically susceptible individuals. The mechanisms underlying the massive expansion of interferon gamma-producing intraepithelial cytotoxic T lymphocytes (CTLs) and the destruction of the epithelial cells lining the small intestine of celiac patients have remained elusive. We report massive oligoclonal expansions of intraepithelial CTLs that exhibit a profound genetic reprogramming of natural killer (NK) functions.

View Article and Find Full Text PDF

Giant cell tumor (GCT) of bone is a unique bone lesion that is characterized by an excessive number of multinucleated osteoclasts. GCT consists of neoplastic stromal cells, multinucleated osteoclasts and their precursors, thus serving as a naturally occurring human disease model for the study of osteoclastogenesis. It still remains unclear how stromal cells of GCT recruit osteoclast precursors.

View Article and Find Full Text PDF

Giant cell tumor of bone is an aggressive tumor characterized by extensive bone destruction and high recurrence rates. This tumor consists of stromal cells and hematopoietic cells that interact in an autocrine manner to produce tumoral osteoclastogenesis and bone resorption. This autocrine regulation may be disrupted by novel therapeutic agents.

View Article and Find Full Text PDF

The purpose of our study was to identify transcripts specific for tissue-restricted, membrane-associated proteins in human islets that, in turn, might serve as markers of healthy or diseased islet cell masses. Using oligonucleotide chips, we obtained gene expression profiles of human islets for comparison with the profiles of exocrine pancreas, liver, and kidney tissue. As periislet presence of type 1 interferon is associated with the development of type 1 diabetes, the expression profile of human islets treated ex vivo with interferon-alpha2beta (IFNalpha2beta) was also determined.

View Article and Find Full Text PDF

The molecular pathogenesis of focal/diffuse proliferative lupus glomerulonephritis was studied by cDNA microarray analysis of gene expression in glomeruli from clinical biopsies. Transcriptional phenotyping of glomeruli isolated by laser-capture microscopy revealed considerable kidney-to-kidney heterogeneity in increased transcript expression, resulting in four main gene clusters that identified the presence of B cells, several myelomonocytic lineages, fibroblast and epithelial cell proliferation, matrix alterations, and expression of type I IFN-inducible genes. Glomerulus-to-glomerulus variation within a kidney was less marked.

View Article and Find Full Text PDF

Activating and inhibitory CD94/NKG2 receptors regulate CTL responses by altering TCR signaling, thus modifying antigen activation thresholds set during thymic selection. To determine whether their expression was linked to TCR specificity, we examined the TCR repertoire of oligoclonal CTL expansions found in human blood and tissues. High-resolution TCR repertoire analysis revealed that commitment to inhibitory NKG2A expression was a clonal attribute developmentally acquired after TCR expression and during antigen encounter, whereas actual surface expression depended on recent TCR engagement.

View Article and Find Full Text PDF