Publications by authors named "Robert J W Brewin"

Rising surface temperatures are projected to cause more frequent and intense droughts in the world's drylands. This can lead to land degradation, mobilization of soil particles, and an increase in dust aerosol emissions from arid and semi-arid regions. Dust aerosols are a key source of bio-essential nutrients, can be transported in the atmosphere over large distances, and ultimately deposited onto the ocean's surface, alleviating nutrient limitation and increasing oceanic primary productivity.

View Article and Find Full Text PDF

Phytoplankton turn seawater green when their concentration increases. This allows us to monitor them using ocean colour. However, as the spectral properties of phytoplankton and their relationship with other coloured substances in seawater vary, subtle differences (anomalies) in ocean colour occur that can cause large errors in estimates of phytoplankton abundance.

View Article and Find Full Text PDF

The community structure and ecological function of marine ecosystems are critically dependent on phytoplankton. However, our understanding of phytoplankton is limited due to the lack of detailed information on their morphology. To address this gap, we developed a framework that combines scanning electron microscopy (SEM) with photogrammetry to create realistic 3D (three-dimensional) models of phytoplankton.

View Article and Find Full Text PDF

A significant amount of organic carbon is transported in dissolved form from soils to coastal oceans via inland water systems, bridging land and ocean carbon reservoirs. However, it has been discovered that the presence of terrigenous dissolved organic carbon (tDOC) in oceans is relatively limited. Therefore, understanding the fates of tDOC in coastal oceans is essential to account for carbon sequestration through land ecosystems and ensure accurate regional carbon budgeting.

View Article and Find Full Text PDF

Fiducial reference measurements are in-situ data traceable to metrology standards, with associated uncertainties. This paper presents the methodology used to derive the uncertainty budget for underway, above-water measurements from the Seabird Hyperspectral Surface Acquisition System deployed on an Atlantic Meridional Transect in 2018. The average uncertainty of remote sensing reflectance for clear sky days was ∼ 6% at wavelengths < 490 nm and ∼ 12% at wavelengths > 550 nm.

View Article and Find Full Text PDF

We describe an approach to partition a vertical profile of chlorophyll-a concentration into contributions from two communities of phytoplankton: one (community 1) that resides principally in the turbulent mixed-layer of the upper ocean and is observable through satellite visible radiometry; the other (community 2) residing below the mixed-layer, in a stably stratified environment, hidden from the eyes of the satellite. The approach is tuned to a time-series of profiles from a Biogeochemical-Argo float in the northern Red Sea, selected as its location transitions from a deep mixed layer in winter (characteristic of vertically well-mixed systems) to a shallow mixed layer in the summer with a deep chlorophyll-a maximum (characteristic of vertically stratified systems). The approach is extended to reproduce profiles of particle backscattering, by deriving the chlorophyll-specific backscattering coefficients of the two communities and a background coefficient assumed to be dominated by non-algal particles in the region.

View Article and Find Full Text PDF

Lagrangian analysis is becoming increasingly important to better understand the ocean's biological and biogeochemical cycles. Yet, biologists and chemists often lack the technical skills required to set up such analyses. Here, we present a new product of pre-computed ocean Lagrangian trajectories (OLTraj) targeting non-expert users, and demonstrate how to use it by means of worked examples.

View Article and Find Full Text PDF

Optical models have been proposed to relate spectral variations in the beam attenuation (c) and optical backscattering (b) coefficients to marine particle size distributions (PSDs). However, due to limited PSD data, particularly in the open ocean, optically derived PSDs suffer from large uncertainties and we have a poor empirical understanding of the drivers of spectral c and b coefficients. Here we evaluated PSD optical proxies and investigated their drivers by analyzing an unprecedented dataset of co-located PSDs, phytoplankton abundances and optical measurements collected across the upper 500 m of the Atlantic Ocean.

View Article and Find Full Text PDF

Cell abundances of Prochlorococcus, Synechococcus, and autotrophic picoeukaryotes were estimated in surface waters using principal component analysis (PCA) of hyperspectral and multispectral remote-sensing reflectance data. This involved the development of models that employed multilinear correlations between cell abundances across the Atlantic Ocean and a combination of PCA scores and sea surface temperatures. The models retrieve high Prochlorococcus abundances in the Equatorial Convergence Zone and show their numerical dominance in oceanic gyres, with decreases in Prochlorococcus abundances towards temperate waters where Synechococcus flourishes, and an emergence of picoeukaryotes in temperate waters.

View Article and Find Full Text PDF

Continental margins are disproportionally important for global primary production, fisheries and CO uptake. However, across the Northeast Atlantic shelves, there has been an ongoing summertime decline of key biota-large diatoms, dinoflagellates and copepods-that traditionally fuel higher tropic levels such as fish, sea birds and marine mammals. Here, we combine multiple time series with in situ process studies to link these declines to summer nutrient stress and increasing proportions of picophytoplankton that can comprise up to 90% of the combined pico- and nanophytoplankton biomass in coastal areas.

View Article and Find Full Text PDF

Primary production and photoacclimation models are two important classes of physiological models that find applications in remote sensing of pools and fluxes of carbon associated with phytoplankton in the ocean. They are also key components of ecosystem models designed to study biogeochemical cycles in the ocean. So far, these two classes of models have evolved in parallel, somewhat independently of each other.

View Article and Find Full Text PDF
Article Synopsis
  • * Generating a comprehensive ocean colour time series is complex, involving the selection of suitable algorithms, merging data from different satellite sensors, and correcting for inter-sensor biases to ensure a consistent dataset.
  • * Validation against ground-based observations and quantifying uncertainties on a pixel-by-pixel level are crucial for ensuring data quality and supporting accurate climate studies.
View Article and Find Full Text PDF

We present a model that estimates the spectral phytoplankton absorption coefficient ( a p h ( λ ) ) of four phytoplankton groups (picophytoplankton, nanophytoplankton, dinoflagellates, and diatoms) as a function of the total chlorophyll-a concentration () and sea surface temperature (SST). Concurrent data on a p h ( λ ) (at 12 visible wavelengths), and SST, from the surface layer (<20 m depth) of the North Atlantic Ocean, were partitioned into training and independent validation data, the validation data being matched with satellite ocean-colour observations. Model parameters (the chlorophyll-specific phytoplankton absorption coefficients of the four groups) were tuned using the training data and found to compare favourably (in magnitude and shape) with results of earlier studies.

View Article and Find Full Text PDF

Phytoplankton biomass and size structure are recognized as key ecological indicators. With the aim to quantify the relationship between these two ecological indicators in tropical waters and understand controlling factors, we analyzed the total chlorophyll- concentration, a measure of phytoplankton biomass, and its partitioning into three size classes of phytoplankton, using a series of observations collected at coastal sites in the central Red Sea. Over a period of 4 years, measurements of flow cytometry, size-fractionated chlorophyll- concentration, and physical-chemical variables were collected near Thuwal in Saudi Arabia.

View Article and Find Full Text PDF

Two expanding areas of science and technology are citizen science and three-dimensional (3D) printing. Citizen science has a proven capability to generate reliable data and contribute to unexpected scientific discovery. It can put science into the hands of the citizens, increasing understanding, promoting environmental stewardship, and leading to the production of large databases for use in environmental monitoring.

View Article and Find Full Text PDF

Marine microscopic particles profoundly impact global biogeochemical cycles, but our understanding of their dynamics is hindered by lack of observations. To fill this gap, optical backscattering measured by satellite sensors and in-situ autonomous platforms can be exploited. Unfortunately, these observations remain critically limited by an incomplete mechanistic understanding of what particles generate the backscattering signal.

View Article and Find Full Text PDF

Measurements of the absorption coefficient of chromophoric dissolved organic matter (ay) are needed to validate existing ocean-color algorithms. In the surface open ocean, these measurements are challenging because of low ay values. Yet, existing global datasets demonstrate that ay could contribute between 30% to 50% of the total absorption budget in the 400-450 nm spectral range, thus making accurate measurement of ay essential to constrain these uncertainties.

View Article and Find Full Text PDF

Coral reefs rely on inter-habitat connectivity to maintain gene flow, biodiversity and ecosystem resilience. Coral reef communities of the Red Sea exhibit remarkable genetic homogeneity across most of the Arabian Peninsula coastline, with a genetic break towards the southern part of the basin. While previous studies have attributed these patterns to environmental heterogeneity, we hypothesize that they may also emerge as a result of dynamic circulation flow; yet, such linkages remain undemonstrated.

View Article and Find Full Text PDF

The "mesopelagic" is the region of the ocean between about 100 and 1000 m that harbours one of the largest ecosystems and fish stocks on the planet1,2. This vastly unexplored ecosystem is believed to be mostly sustained by chemical energy, in the form of fast-sinking particulate organic carbon, supplied by the biological carbon pump3. Yet, this supply appears insufficient to match mesopelagic metabolic demands4-6.

View Article and Find Full Text PDF

The social and economic benefits of the coastal zone make it one of the most treasured environments on our planet. Yet it is vulnerable to increasing anthropogenic pressure and climate change. Coastal management aims to mitigate these pressures while augmenting the socio-economic benefits the coastal region has to offer.

View Article and Find Full Text PDF

Geo-engineering proposals to mitigate global warming have focused either on methods of carbon dioxide removal, particularly nutrient fertilization of plant growth, or on cooling the Earth's surface by reducing incoming solar radiation (shading). Marine phytoplankton contribute half the Earth's biological carbon fixation and carbon export in the ocean is modulated by the actions of microbes and grazing communities in recycling nutrients. Both nutrients and light are essential for photosynthesis, so understanding the relative influence of both these geo-engineering approaches on ocean ecosystem production and processes is critical to the evaluation of their effectiveness.

View Article and Find Full Text PDF

Tropical marginal seas (TMSs) are natural subregions of tropical oceans containing biodiverse ecosystems with conspicuous, valued, and vulnerable biodiversity assets. They are focal points for global marine conservation because they occur in regions where human populations are rapidly expanding. Our review of 11 TMSs focuses on three key ecosystems-coral reefs and emergent atolls, deep benthic systems, and pelagic biomes-and synthesizes, illustrates, and contrasts knowledge of biodiversity, ecosystem function, interaction between adjacent habitats, and anthropogenic pressures.

View Article and Find Full Text PDF

The Red Sea holds one of the most diverse marine ecosystems, primarily due to coral reefs. However, knowledge on large-scale phytoplankton dynamics is limited. Analysis of a 10-year high resolution Chlorophyll-a (Chl-a) dataset, along with remotely-sensed sea surface temperature and wind, provided a detailed description of the spatiotemporal seasonal succession of phytoplankton biomass in the Red Sea.

View Article and Find Full Text PDF

Using an extensive database of in situ observations we present a model that estimates the particle backscattering coefficient as a function of the total chlorophyll concentration in the open-ocean (Case-1 waters). The parameters of the model include a constant background component and the chlorophyll-specific backscattering coefficients associated with small (<20 μm) and large (>20 μm) phytoplankton. The new model performed with similar accuracy when compared with a traditional power-law function, with the additional benefit of providing information on the role of phytoplankton size.

View Article and Find Full Text PDF