Publications by authors named "Robert J Scarborough"

Human immunodeficiency virus (HIV) and human T cell leukemia virus (HTLV) have replicative and latent stages of infection. The status of the viruses is dependent on the cells that harbour them and on different events that change the transcriptional and post-transcriptional events. Non-coding (nc)RNAs are key factors in the regulation of retrovirus replication cycles.

View Article and Find Full Text PDF

To date, the only intervention that has cured HIV infection has been bone marrow transplants from HIV-resistant donors to HIV-infected recipients. This approach has been used to both cure hematological malignancies and HIV infection, but it cannot be widely adopted due to the high risk of mortality associated with cell transplants between individuals. To overcome this limitation, several approaches have been developed to generate HIV resistance using gene therapy in an infected individual's own cells.

View Article and Find Full Text PDF

To date, the only intervention that has cured HIV infection has been bone marrow transplants from HIV-resistant donors to HIV-infected recipients. This approach has been used to both cure hematological malignancies and HIV infection, but it cannot be widely adopted due to the high risk of mortality associated with cell transplants between individuals. To overcome this limitation, several approaches have been developed to generate HIV resistance using gene therapy in an infected individual's own cells.

View Article and Find Full Text PDF

Introduction: Long-term control of HIV-1 infection can potentially be achieved using autologous stem cell transplants with gene-modified cells. Non-coding RNAs represent a diverse class of therapeutic agents including ribozymes, RNA aptamers and decoys, small interfering RNAs, short hairpin RNAs, and U1 interference RNAs that can be designed to inhibit HIV-1 replication. They have been engineered for delivery as drugs to complement current HIV-1 therapies and as gene therapies for a potential HIV-1 functional cure.

View Article and Find Full Text PDF

The expression of short hairpin RNAs (shRNAs) in cells has many potential therapeutic applications, including as a functional cure for HIV. The RNA polymerase III promoters H1, 7SK, and U6 have all been used to express shRNAs. However, there have been no direct and simultaneous comparisons of shRNA potency, expression level, and transcriptional profile between the promoters.

View Article and Find Full Text PDF

RNA aptamers can be used to target proteins or nucleic acids for therapeutic purposes and are candidates for RNA-mediated gene therapy. Like other small therapeutic RNAs, they can be expressed in cells from DNA templates that include a cellular promoter upstream of the RNA coding sequence. Secondary structures flanking aptamers can be used to enhance the activity or stability of these molecules.

View Article and Find Full Text PDF

U1 interference (U1i) RNAs can be designed to correct splicing defects and target pathogenic RNA, such as HIV-1 RNA. In this study, we show that U1i RNAs that enhance HIV-1 RNA splicing are more effective at inhibiting HIV-1 production compared to top U1i RNAs that inhibit polyadenylation of HIV-1 RNA. A U1i RNA was also identified targeting a site upstream of the first splice acceptor site in the Gag coding region that was effective at inhibiting HIV-1 production.

View Article and Find Full Text PDF

Current drug therapies for human immunodeficiency virus type 1 (HIV) infection are effective in preventing progression to acquired immune deficiency syndrome but do not eliminate the infection and are associated with unwanted side effects. A potential alternative is to modify the genome of patient cells via gene therapy to confer HIV resistance to these cells. Small RNAs are the largest and most diverse group of anti-HIV genes that have been developed for engineering HIV resistant cells.

View Article and Find Full Text PDF

Zika virus (ZIKV) is an emerging pathogen from the family. It represents a significant threat to global health due to its neurological and fetal pathogenesis (including microcephaly and congenital malformations), and its rapid dissemination across Latin America in recent years. The virus has spread from Africa to Asia, the Pacific islands and the Americas with limited knowledge about the pathogenesis associated with infection in recent years.

View Article and Find Full Text PDF

HIV-1 drug therapies can prevent disease progression but cannot eliminate HIV-1 viruses from an infected individual. While there is hope that elimination of HIV-1 can be achieved, several approaches to reach a functional cure (control of HIV-1 replication in the absence of drug therapy) are also under investigation. One of these approaches is the transplant of HIV-1 resistant cells expressing anti-HIV-1 RNAs, proteins or peptides.

View Article and Find Full Text PDF

Small RNA therapies targeting post-integration steps in the HIV-1 replication cycle are among the top candidates for gene therapy and have the potential to be used as drug therapies for HIV-1 infection. Post-integration inhibitors include ribozymes, short hairpin (sh) RNAs, small interfering (si) RNAs, U1 interference (U1i) RNAs and RNA aptamers. Many of these have been identified using transient co-transfection assays with an HIV-1 expression plasmid and some have advanced to clinical trials.

View Article and Find Full Text PDF

We have previously identified a target site in HIV-1 RNA that was particularly accessible to a ribozyme and a short hairpin RNA (shRNA). To design small interfering RNAs (siRNAs) targeting this site, we evaluated the effects of siRNAs with different lengths on HIV-1 production. The potency and efficacy of these siRNAs were dependent on the length of their intended sense strand with trends for symmetrical and asymmetrical formats that were similar.

View Article and Find Full Text PDF

Ribozymes are structured RNA molecules that act as catalysts in different biological reactions. From simple genome cleaving activities in satellite RNAs to more complex functions in cellular protein synthesis and gene regulation, ribozymes play important roles in all forms of life. Several naturally existing ribozymes have been modified for use as therapeutics in different conditions, with HIV-1 infection being one of the most studied.

View Article and Find Full Text PDF

Several proteins and RNAs expressed by mammalian viruses have been reported to interfere with RNA interference (RNAi) activity. We investigated the ability of the HIV-1-encoded RNA elements Trans-Activation Response (TAR) and Rev-Response Element (RRE) to alter RNAi. MicroRNA let7-based assays showed that RRE is a potent suppressor of RNAi activity, while TAR displayed moderate RNAi suppression.

View Article and Find Full Text PDF

Antisense-based molecules targeting HIV-1 RNA have the potential to be used as part of gene or drug therapy to treat HIV-1 infection. In this study, HIV-1 RNA was screened to identify more conserved and accessible target sites for ribozymes based on the hepatitis delta virus motif. Using a quantitative screen for effects on HIV-1 production, we identified a ribozyme targeting a highly conserved site in the Gag coding sequence with improved inhibitory potential compared to our previously described candidates targeting the overlapping Tat/Rev coding sequence.

View Article and Find Full Text PDF

Nucleic acid therapies targeting HIV replication have the potential to be used in conjunction with or in place of the standard small-molecule therapies. Among the different classes of nucleic acid therapies, several ribozymes (Rzs, RNA enzymes) have been developed to target HIV RNA. The design of Rzs targeting HIV RNA is complicated by the sequence diversity of viral strains and the structural diversity of their target sites.

View Article and Find Full Text PDF

RNA-based compounds are promising agents to inactivate viruses. New specific hepatitis delta virus (HDV)-derived ribozymes are natural molecules that can be engineered to specifically target a viral RNA. We have designed specific on-off adaptor (SOFA)-HDV ribozymes targeting the tat and rev sequences of the human immunodeficiency virus type 1 (HIV-1) RNA.

View Article and Find Full Text PDF

Background: Dicer, Ago2 and TRBP are the minimum components of the human RNA-induced silencing complex (RISC). While Dicer and Ago2 are RNases, TRBP is the double-stranded RNA binding protein (dsRBP) that loads small interfering RNA into the RISC. TRBP binds directly to Dicer through its C-terminal domain.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session2p4fs6vjtr2h61bk3c0a791aro7ivt4m): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once