Cement hydration occurs when water is added to cement powder, leading to the formation of crystalline products like Portlandite and the quasi-amorphous, poorly crystalline, calcium silicate hydrate (C-S-H) gel. Despite its importance in determining the final properties of the cement, many models exist for the nano and sub-nano level organization of this "liquid stone." (1)H NMR relaxometry in White Portland Cement paste during hydration allowed us to monitor the formation and evolution of the multiscale porosity of the cement, with the formation of structures at nano and sub-nano levels of C-S-H gel (calcium silicate interlayer water, water in small and large gel pores) along with three low-mobility (1)H pools, identified as (1)H nuclei in C-S-H layers, likely belonging to OH groups, with (1)H nuclei in Portlandite, and in crystal water of Ettringite.
View Article and Find Full Text PDFNuclear magnetic resonance relaxation analysis of liquid water (1)H nuclei in real porous media, selected for their similar composition (carbonate rocks) and different pore space architecture, polluted with calcium nitrate, is presented to study the kinetics of water condensation and salt deliquescence inside the pore space. These phenomena are responsible for deterioration of porous materials when exposed to environmental injury by pollution in a humid atmosphere. The theory is well described for simple pore geometries, but it is not yet well understood in real porous media with wide distributions of pore sizes and connections.
View Article and Find Full Text PDFFor a liquid sample with unrestricted diffusion in a constant magnetic field gradient g, the increase R in R2=1/T2 for CPMG measurements is 1/3(taugammag)2D, where gamma is magnetogyric ratio, tau is the half the echo spacing TE, and D is the diffusion constant. For measurements on samples of porous media with pore fluids and without externally applied gradients there may still be significant pore-scale local inhomogeneous fields due to susceptibility differences, whose contributions to R2 depend on tau. Here, diffusion is not unrestricted nor is the field gradient constant.
View Article and Find Full Text PDFDespite significant differences between bone tissues and other porous media such as oilfield rocks, there are common features as well as differences in the response of NMR relaxation measurements to the internal structures of the materials. Internal surfaces contribute to both transverse (T2) and longitudinal (T1) relaxation of pore fluids, and in both cases the effects depend on, among other things, local surface-to-volume ratio (S/V). In both cases variations in local S/V can lead to distributions of relaxation times, sometimes over decades.
View Article and Find Full Text PDF