To exploit tumor and intracellular microenvironments, pH-responsive diblock copolymers of poly(ethylene glycol) and catechol-functionalized polycarbonate with acid-labile acetal bond as the linker are synthesized to prepare micellar nanoparticles that shed the shell at acidic tumor tissues and inside cancer cells, hence accelerating drug release at the target. The pH-dependent cleavage of the shell is demonstrated at pH 5.0 and 6.
View Article and Find Full Text PDFACS Appl Mater Interfaces
April 2018
In this study, bortezomib (BTZ, a cytotoxic water-insoluble anticancer drug) was encapsulated in micellar nanoparticles having a catechol-functionalized polycarbonate core through a pH-sensitive covalent bond between phenylboronic acid (PBA) in BTZ and catechol, and these drug-loaded micelles were incorporated into hydrogels to form micelle/hydrogel composites. A series of injectable, biodegradable hydrogels with readily tunable mechanical properties were formed and optimized for sustained delivery of the BTZ-loaded micelles through ionic coacervation between PBA-functionalized polycarbonate/poly(ethylene glycol) (PEG) "ABA" triblock copolymer and a cationic one having guanidinium- or thiouronium-functionalized polycarbonate as "A" block. An in vitro release study showed the pH dependence in BTZ release.
View Article and Find Full Text PDFBiodegradable polycarbonate-based ABA triblock copolymers were synthesized via organocatalyzed ring-opening polymerization and successfully formulated into chemically cross-linked hydrogels by strain-promoted alkyne-azide cycloaddition (SPAAC). The synthesis and cross-linking of these polymers are copper-free, thereby eliminating the concern over metallic contaminants for biomedical applications. Gelation occurs rapidly within a span of 60 s by simple mixing of the azide- and cyclooctyne-functionalized polymer solutions.
View Article and Find Full Text PDFEffective antimicrobial agents are important arsenals in our perennial fight against communicable diseases, hospital-acquired and surgical site multidrug-resistant infections. In this study, we devise a strategy for the development of highly efficacious and skin compatible yet inexpensive water-soluble macromolecular antimicrobial polyionenes by employing a catalyst-free, polyaddition polymerization using commercially available monomers. A series of antimicrobial polyionenes are prepared through a simple polyaddition reaction with both polymer-forming reaction and charge installation occurring simultaneously.
View Article and Find Full Text PDFPostpolymerization modification is a critical strategy for the development of functional polycarbonate scaffolds for medicinal applications. To expand the scope of available postpolymerization functionalization methods, polycarbonates containing pendant thioether groups were synthesized by organocatalyzed ring-opening polymerization. The thioether group allowed for the postpolymerization ring-opening of functional epoxides, affording a wide variety of sulfonium-functionalized A-B diblock and A-B-A triblock polycarbonate copolymers.
View Article and Find Full Text PDFThere is a growing interest in modern healthcare to develop systems able to fight antibiotic resistant bacteria. Antimicrobial cationic biodegradable polymers able to mimic antimicrobial peptides have shown to be effective against both Gram-positive and Gram-negative bacteria. In these systems, the hydrophilic-hydrophobic ratio and the cationic charge density play a pivotal role in defining the killing efficiency.
View Article and Find Full Text PDFConjugated polymers in the solid state usually exhibit low fluorescence quantum yields, which limit their applications in many areas such as light-emitting diodes. Despite considerable research efforts, the underlying mechanism still remains controversial and elusive. Here, the nature and properties of excited states in the archetypal polythiophene are investigated via aggregates suspended in solvents with different dielectric constants (ɛ).
View Article and Find Full Text PDFBiodegradable polycarbonate-based ABA triblock copolyelectrolytes were synthesized and formulated into physically cross-linked hydrogels. These biocompatible, cationically, and anionically charged hydrogel materials exhibited pronounced shear-thinning behavior, making them useful for a variety of biomedical applications. For example, we investigated the antimicrobial activity of positively charged thiouronium functionalized hydrogels by microbial growth inhibition assays against several clinically relevant Gram-negative and Gram-positive bacteria.
View Article and Find Full Text PDFCarboxylated oligothiophenes were evaluated as interfacial modifiers between the organic poly(3-hexylthiophene) (P3HT) and inorganic TiO2 layers in bilayer hybrid polymer solar cells. Carboxylated oligothiophenes can be isolated using conventional purification techniques resulting in pure, monodisperse molecules with 100% carboxylation. Device prototypes using carboxylated oligothiophenes as interfacial modifiers showed improved performance in the open-circuit voltage and fill factor over devices using unmodified oligothiophenes as interfacial modifiers.
View Article and Find Full Text PDFThe rapid emergence of antibiotic resistance in pathogenic microbes is becoming an imminent global public health problem. Treatment with conventional antibiotics often leads to resistance development as the majority of these antibiotics act on intracellular targets, leaving the bacterial morphology intact. Thus, they are highly prone to develop resistance through mutation.
View Article and Find Full Text PDFExcitonic energy migration was studied using single molecule spectroscopy of individual conjugated polymer (CP) chains and aggregates. To probe the effect of interchain morphology on energy migration in CP, tailored interchain morphologies were achieved using solvent vapor annealing to construct polymer aggregates, which were then studied with single aggregate spectroscopy. We report that highly ordered interchain packing in regioregular poly(3-hexylthiophene) (rr-P3HT) enables long-range interchain energy migration, while disordered packing in regiorandom poly(3-hexylthiophene) (rra-P3HT), even in aggregates of just a few chains, can dramatically impede the interchain mechanism.
View Article and Find Full Text PDFAn antibacterial and antifouling surface is obtained by simple one-step immersion of a catheter surface with brush-like polycarbonates containing pendent adhesive dopamine, antifouling polyethylene glycol (PEG), and antibacterial cations. This coating demonstrates excellent antibacterial and antifouling activities against both Gram-positive (S. aureus) and Gram-negative (E.
View Article and Find Full Text PDFPolymeric micelles self-assembled from biodegradable amphiphilic block copolymers have been proven to be effective drug delivery carriers that reduce the toxicity and enhance the therapeutic efficacy of free drugs. Several reviews have been reported in the literature to discuss the importance of size/size distribution, stability and drug loading capacity of polymeric micelles for successful in vivo drug delivery. This review is focused on non-covalent and covalent interactions that are employed to enhance cargo loading capacity and in vivo stability, and to achieve nanosize with narrow size distribution.
View Article and Find Full Text PDFThe spatial arrangement of the side chains of conjugated polymer backbones has critical effects on the morphology and electronic and photophysical properties of the corresponding bulk films. The effect of the side-chain-distribution density on the conformation at the isolated single-polymer-chain level was investigated with regiorandom (rra-) poly(3-hexylthiophene) (P3HT) and poly(3-hexyl-2,5-thienylene vinylene) (P3HTV). Although pure P3HTV films are known to have low fluorescence quantum efficiencies, we observed a considerable increase in fluorescence intensity by dispersing P3HTV in poly(methyl methacrylate) (PMMA), which enabled a single-molecule spectroscopy investigation.
View Article and Find Full Text PDFTreatment of a Ni-terminated poly(3-hexylthiophene) (P3HT), generated in situ from 5-chloromagnesio-2-bromo-3-hexylthiophene and Ni(1,3-bis(diphenylphosphino)propane)Cl2, with a perylene diimide-functionalized arylisocyanide monomer effects a chain-extension polymerization to afford a donor-acceptor diblock copolymer using a single catalyst and in a single reaction vessel. The two mechanistically distinct polymerizations proceed in a controlled, chain growth fashion, allowing the molecular weight of both the P3HT and poly(isocyanide) blocks to be tuned by adjusting the initial monomer-to-catalyst ratios. The resulting materials are found to self-assemble into crystalline, lamellar stacks of donor and acceptor components in the solid state, and also exhibit fluorescence quenching in thin films, properties which poise these materials for use in organic photovoltaic applications.
View Article and Find Full Text PDFHerein, we describe a catalyst transfer polycondensation that enabled access to well-defined poly(p-phenyleneethynylene) (PPE), a prominent conjugated polymer. Treatment of a stannylated 4-iodophenylacetylene derivative with PhPd(t-Bu3P)Br afforded the corresponding PPE in up to 94% yield. Under optimized conditions, the molecular weight of the polymer increased linearly with monomer consumption, and was controlled by adjusting the initial monomer-to-catalyst ratio.
View Article and Find Full Text PDFHerein we describe the use of regioregular (rr-) and regiorandom (rra-) P3HT as models to study energy transfer in ordered and disordered single conjugated polymer chains. Single molecule fluorescence spectra and excitation/emission polarization measurements were compared with a Förster resonance energy transfer (FRET) model simulation. An increase in the mean single chain polarization anisotropy from excitation to emission was observed for both rr- and rra-P3HT.
View Article and Find Full Text PDFConjugated polymers (CPs) are promising materials for use in electronic applications, such as low-cost, easily processed organic photovoltaic (OPV) devices. Improving OPV efficiencies is hindered by a lack of a fundamental understanding of the photophysics in CP-based thin films that is complicated by their heterogeneous nanoscale morphologies. Here, we report on a poly(3-hexylthiophene)-block-poly(tert-butyl acrylate)-block-poly(3-hexylthiophene) rod-coil-rod triblock copolymer.
View Article and Find Full Text PDFCoupling of various 4-substituted phenyl azides with two distinct quinone-containing N-heterocyclic carbenes (NHCs) afforded the respective mono- and ditopic 1,3-disubstituted acyclic triazenes in moderate to excellent yields (38-92%). Depending on their pendant substituents (derived from the azides), the acyclic triazenes exhibited intense absorptions in the visible spectrum (359-428 nm), which were bathochromically shifted by up to Δλ=68 nm upon reduction of the quinone moiety on the component derived from the NHC. Cyclic voltammetry confirmed that the aforementioned redox processes were reversible, and a related set of UV-vis spectroelectrochemical experiments revealed that bulk electrolysis may also be used to switch reversibly the colors exhibited by these triazenes.
View Article and Find Full Text PDFChem Commun (Camb)
January 2011
A modular and convenient synthesis of ethynyl end functionalized poly(3-hexylthiophene) in high purity is reported; this material facilitated access to poly(3-hexylthiophene)-block-poly(acrylic acid) which self-assembled into hierarchical structures.
View Article and Find Full Text PDFBlock copolymers of poly(3-hexylthiophene) and a poly(arylisocyanide) were synthesized in a single pot via the addition of 2-bromo-3-hexyl-5-chloromagnesiothiophene followed by n-decyl 4-isocyanobenzoate to a solution of Ni(1,3-bis(diphenylphosphino)propane)Cl(2). The respective mechanistically distinct polymerizations proceeded in a controlled fashion and afforded well-defined block copolymers with tunable molecular weights and compositions. The block copolymers exhibited microphase separation characteristics in the solid state.
View Article and Find Full Text PDFReaction of bromanil with N,N'-dimesitylformamidine followed by deprotonation with NaN(SiMe(3))(2) afforded 1,1',3,3'-tetramesitylquinobis(imidazolylidene) (1), a bis(N-heterocyclic carbene) (NHC) with two NHC moieties connected by a redox active p-quinone residue, in 72 % yield of isolated compound. Bimetallic complexes of 1 were prepared by coupling to FcN(3) (2) or FcNCS (3; Fc=ferrocenyl) or coordination to [M(cod)Cl] (4 a or 4 b, where M=Rh or Ir, respectively; cod=1,5-cyclooctadiene). Treatment of 4 a and 4 b with excess CO(g) afforded the corresponding [M(CO)(2)Cl] complexes 5 a and 5 b, respectively.
View Article and Find Full Text PDF