Carbazole-based molecules play a significant role in dye-sensitized solar cells (DSSCs) due to their advantageous properties. Carbazole derivatives are known for their thermal stability, high hole-transport capability, electron-rich (p-type) characteristics, elevated photoconductivity, excellent chemical stability, and commercial availability. This review focuses on DSSCs, including their structures, working principles, device characterization, and the photovoltaic performance of carbazole-based derivatives.
View Article and Find Full Text PDFWe herein report successful syntheses of both nickel cobalt sulfide (NCS) and its composite with zeolite (NCS@Z) using a solvothermal method. Techniques such as EDX analysis, SEM, and molar ratio determination were used for product characterization. The incorporation of NCS significantly changed the surface roughness and active sites of the zeolite, improving the efficiency of methylene blue degradation and its reusability, especially under UV irradiation.
View Article and Find Full Text PDFIn this study, the gas-phase homolytic P-F and P-Cl bond dissociation energies (BDEs) of a set of thirty fluorophosphine (RRP-F) and thirty chlorophosphine-type (RRP-Cl) molecules have been obtained using the high-level W2 thermochemical protocol. For the RRP-F species, the P-F BDEs (at 298 K) differ by up to 117.0 kJ mol, with (HSi)P-F having the lowest BDE (439.
View Article and Find Full Text PDFFluoroborane-type molecules (RRB-F) are of interest in synthetic chemistry, but to date, apart from a handful of small species (such as HBF, HBF, and BF), little is known concerning the effect of substituents in governing the strength of the B-F bonds of such species toward homolytic dissociation in the gas phase. In this study, we have calculated the bond dissociation enthalpies (BDEs) of thirty unique B-F bonds at the CCSD(T)/CBS level using the high-level W1w thermochemical protocol. The B-F bonds in all species considered are very strong, ranging from 545.
View Article and Find Full Text PDFWe report that bifunctional molecules containing hydroxyl and carbonyl functional groups can undergo an effective transfer hydrogenation via an intramolecular proton-coupled hydride transfer (PCHT) mechanism. In this reaction mechanism, a hydride transfer between two carbon atoms is coupled with a proton transfer between two oxygen atoms via a cyclic bond rearrangement transition structure. The coupled transfer of the two hydrogens as H and H is supported by atomic polar tensor charges.
View Article and Find Full Text PDFIn this study, we investigate the effect of substituents in determining the modes of one-electron reductive cleavage of X-NRR' (X = Cl and Br) molecules. We achieve this through comparison of the calculated gas-phase electron affinities (EAs) and aqueous-phase one-electron reduction potentials (E°'s) for a range of nitrogen-centered radicals ((•)NRR') with the corresponding EA and E° values for (•)Cl and (•)Br. The gas-phase EAs have been obtained using the benchmark-quality W1w thermochemical protocol, whereas E° values have been obtained by additionally applying free energy of solvation corrections, obtained using the conductor-like polarizable continuum (CPCM) model.
View Article and Find Full Text PDFThe enzyme myeloperoxidase generates significant amounts of hypochlorous acid (HOCl) at sites of inflammation to inflict oxidative damage upon invading pathogens. However, excessive production of this potent oxidant is associated with numerous inflammatory diseases. Recent kinetic measurements suggest that the endogenous antioxidant carnosine is an effective HOCl scavenger.
View Article and Find Full Text PDFIn recent computational studies of hydrogen-atom abstraction from amino acid derivatives, two distinct rationalizations have been put forward for the relative inertness of the α-C-H. Of these, the proposal that the inertness is due to a "kinetic trap" associated with particularly stable complexes is shown to be unlikely because of unfavorable entropies. On the other hand, the proposed existence of deactivating polar effects at the α-position in Cl(•) abstractions is likely also to be applicable to OH(•) abstractions, but to a lesser extent.
View Article and Find Full Text PDFCalculation of accurate water-water interaction energies is of fundamental importance in computational modeling of many biological and chemical phenomena. We have obtained benchmark barrier heights for proton-exchange reactions and complexation energies in water clusters (H2O)n (n = 1-6) by means of the high-level W1-F12 procedure. We find that lower-cost composite procedures (e.
View Article and Find Full Text PDFAccurate electronic barrier heights are obtained for a set of nine proton-transfer tautomerization reactions, which are either (i) uncatalyzed, (ii) catalyzed by one water molecule, or (iii) catalyzed by two water molecules. The barrier heights for reactions (i) and (ii) are obtained by means of the high-level ab initio W2.2 thermochemical protocol, while those for reaction (iii) are obtained using the W1 protocol.
View Article and Find Full Text PDFQuantum chemistry computations have been used to investigate hydrogen-atom abstraction by chlorine atom from protonated and N-acetylated amino acids. The results are consistent with the decreased reactivity at the backbone α-carbon and adjacent side-chain positions that is observed experimentally. The individual effects of NH(3)(+), COOH, and NHAc substituents have been examined and reveal important insights.
View Article and Find Full Text PDFThe effect of substituents on the strength of N-X (X = H, F, and Cl) bonds has been investigated using the high-level W2w thermochemical protocol. The substituents have been selected to be representative of the key functional groups that are likely to be of biological, synthetic, or industrial importance for these systems. We interpreted the effects through the calculation of relative N-X bond dissociation energies (BDE) or radical stabilization energies (RSE(NX)).
View Article and Find Full Text PDFPeroxiredoxins (Prx) are thiol peroxidases that exhibit exceptionally high reactivity toward peroxides, but the chemical basis for this is not well understood. We present strong experimental evidence that two highly conserved arginine residues play a vital role in this activity of human Prx2 and Prx3. Point mutation of either ArgI or ArgII (in Prx3 Arg-123 and Arg-146, which are ∼3-4 Å or ∼6-7 Å away from the active site peroxidative cysteine (C(p)), respectively) in each case resulted in a 5 orders of magnitude loss in reactivity.
View Article and Find Full Text PDFHypochlorous (HOCl) and hypobromous (HOBr) acids are strong bactericidal oxidants that are generated by the human immune system but are implicated in the development of many human inflammatory diseases (e.g., atherosclerosis, asthma).
View Article and Find Full Text PDFThe mechanism for the fragmentation of 5,5-diamino-1,4,2-oxathiazole derivatives has been studied at the CCSD(T)/6-311+G(3df,2p)//MP2/6-31+G(2df,p) level of theory. The calculations suggest that the fragmentation occurs via a stepwise process involving the formation of polar intermediates that lie in shallow potential wells. We find a large thermodynamic driving force for fragmentation, which together with a weakening of the C-S bond through electron donation by the amino substituents provides the impetus for a low-barrier fragmentation.
View Article and Find Full Text PDF